
ED 077 682

AUTHOR
TITLE

DOCUMENT RESUME

SE 016 093

Goldin, Gerald A.; Luger, George F.
Artificial Intelligence Mcdels for Human
Problem-Solving.

PUB DATE Feb 73
NOTE 77p.; Paper presented at the annual meeting of the

American Educational Research Association, New
Orleans, Louisiana, February 1973

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS Cognitive Development; Learning; *Learning Theories;

Mathematical Models; *Mathematics Education; *Problem
Solving; *Research; Thought Processes

ABSTRACT
A theory that there is a correspondence between

Piagetian conservation operations and groups of symmetry
transformations, and that these symmetry transformations may be used
in explaining human problem solving behaviors, is developed in this
paper. Current research in artificial intelligence is briefly
reviewed, then details of the symmetry transformation theory are
given along with examples of its application. The Tower-ot-Hanoi
Problem is extensively-analyzed as-an illustration of the theory.



CO

FILMED FROM BEST-AVAILABLE COPY

ARTIFICIAL INTELLIGENCE MODELS

FOR

HUMAN PROBLEM-SOLVING

by

Gerald A. Goldin-and George F. Luger

Mathematics Education Research

U S OE PARTMENTOF HEALTH.
EDUCATION &WELFARE
NATIONAL INSTITUTEIOP'°-

EDUCATION
Twc DOCVVEN.T BEE`, REPRO

EXACYLv AS RE-:1_4N. EfROV
THE PLRSON OR otz0AN1zai,,Tu

pONTSOr ytESS OR OP,EiOV
STATED DO rOT 1,:ECESSARtLY REDqk
NEW OECIOAR. TuArO%at tEP.EITtjTE es
EDUCATION POi 710% OR Rat .CY

Graduate School of Education University of Pennsylvinia

Philadelphia, Pennsylvania 19174

February 1973



Abstract.

Artificial intelligence models are increasingly employed to de-

scribe human problem-solving. Here the relationsaip is developed be-

tween such research, and Paigetian or more generally "structuralist"

theories of cognition. A fundamental correspondence is suggested

between Piagetian conservation operations and groups of-siMmetry

transformations. 'Acquisition of the ability to treat distinct states r-

of a problem as equivalent when they are symmetrically conjugate, may

be a basic process in the development of cognitive structures.

It is further suggested that the decomposition of a problem into

subgoals and subproblems may arfect problem-solving behavior, even if

the infrastructure of subproblems within the main problem is not on

the surface apparent.

The state-space representation of a problem, borrowed from

artificial intelligence theory, is utilized to define these concepts

more precisely and to investigate their consequences.:- actual-=

behaviors of subjects solving a problem may be represented by paths

through the state-space. Based on the theoretical ideas set forth,

hypotheses are suggested predicting c4, Cain patterns in such paths- -

for example the predominance of goal- and subgoal-directed paths, and

the presence of congruent paths through isomorphic subproblems.

The Tower of Hanoi problem is used to illustrate the main ideas

discussed. The paths through the state -space generated by two

individual subjects display the predicted effects of the subproblem

decomposition and of the symmetry within the state- space. A natural



-

distinction emerges between cognitive structures, i.e. conservation

operationi and symmetries which distinguish the states themselvei,

and problem.:solving strategies for proceeding within the state-space.

An Appendix by one of the authors (GFL) tabulates the behaviors

of forty-five adult subjects solving the Tower of Hanoi problem, in a

test of the suggested hypotheses.



I. Introduction

A dramatically increasing body of research employs "artificial

intelligence" models, or mechanical models, to describe human problem-

solving. Some of this research is oriented towards finding the most

-efficient algorithms or strategies for solving problems with a machine

(Arbib, 1969; Banerji, 1969; Nilsson, 1971; Minsky and Papert, 1972),

While other research is directed towards simulating or_modelling the

human being as a problem-solver (Johnson, 1964; Newell and Simon, 1972).

The present'paper, proceeding in the spirit of Newell and Simon,, develops

What the authors believe to be a heretofore neglected relationship

between artificial intelligence research, and Piagetian or more general-

ly theories of cognition.

Two main theoretical ideas are introduced. First, we assert-the

fundental correspondence between Piagetian- conservation operations
.

and symmetry transformations. In its most general sense, a symmetry

transformation is any operation which carries one state or situation

into another in such a way as to leave unchanged important-observable

features. -In the everyday sense of the word "symmetry," these features

are geometric; for example, the transformation-Which changes a particular

configuration of objects into its "mirror image" may leave the appearance

of the configuration unchanged. However, we-shall be interested in.

syntactic symmetries and symmetries of the underlying structures of

mathematical problems, as well as in the more readily apparent geometric

symmetries.

Attention is focussed on a subject's ability-to treat perceptually

distinct states of a problem as equivalent, when such states are related



by virtue of-a symmetry transformation. The acquisition of such an ability

is frequently essential to the correct solution of a problem, and

seems to correspond to the "insight" phenomenon described by the Gestalt

psychologists. The present paper suggests that_"symmetry acquisition"

may actually be as fundamental a process in the development of'cognitive

structures, as is the acquisition of conservation operations._

The second idea which the'authors_pursue is that in problem-solving,
.

the subject effectively decomposes a problem into subgoils and sub-

problems.- Such a decomposition may govern a subject's behavior even =

when he has not consciously directed himself towards i'particular subgoal,

and despite the fact that the structure of subproblems within the main

problems may not on the surface be apparent. Under such an hypothesis,

One kind of symmetry which may be explored in:a problem is the presence

of subproblems having Identical or isomorphic structure.

The "state-space representation" of a mathematical puzzle or problem,

borroWed from mechanical problem-solving (artificial, intelligence) theory, .

is utilized to define the above concepts more precisely, and,to

gate their consequences. The actual behaviors of subjects solving a

problem may be reptesented by paths through the state-space, corres-
,

ponding to the sequence of steps the subject takes-or the moves he makes.

The theoretical ideas set forth in this paper lead to the prediction of

certain recurrent patterns in such paths--for example, the predominance

of goal- and subgoal-directed paths, and the presence of congruent paths

through isomorphic subproblems.

Section II is a short review of the necessary background and the

most applicable current research in artificial intelligence.

Section III introduces the relationship between symmetry transforms-



tions and conservation operations, and draws an analogy withlthe physical

sciences in order.to motivate this relationship. The notion of symmetry

is_ discussed -in the state - space _of a problem. The example of Piagetian

number conservation is examined in detail; examples are also drawn from

Tic -Tai: -Toe, 2-pile Nim, and a Checkerboard Problem.

In Section IV, im define additional concepts central to the present

approach to-human problesimisolving: subgoals and subproblem state-spaces,

isomorphisms and automorphisms in the state-space, and various means by

Which a subject may "reduce" the state-space diagram in' accomplishing

the solution of a problem.-

The Tower of Hanoi problem, also known as the, Tower of Brahma

(Gamow, 1947; Gardner, 1959), is introduced in Section V, and its state-

space used to illustrate the main ideas so far discussed. The paths

through the state-space generated by two individual subjects are dis-

played. These illustrate the predicted effects of the_decomposition

into subproblems, and of the presence of symmetries within the state-

space. Some possible implications of the present research are suggested

in Section VI.

A paper to follow by- one of the authors (GFL) tabulates the be-

haviors of forty-five adult subjectd solving the Tower of Hanoi problem,

and investigates the validity of the hypotheses presented here.

(
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II. Review of Curren Research.

Here we shall summarize some of the techniques of mechanical

problem-solving, or "artificial intelligence," which have found-appli-

cation to'the programming of problem-solving capabilities on 'the

_ -computer. These are the techniques from which we borrow in order to

establish a framework for the discussion of human problem-solving.

We shall also mention some of' the approaches by other authors applying.

artificial intelligence methods to describe or model the_probiem-

solving behavior of human beings.

A.' State-S ace Re presentations and Search_Al orithms

Nilsson (1971) defines the "state-space representation" of a

problem as the set of distinguishable "situations" or configurations of

the problem, together with the permitted "moves" or steps (transitions)

from one problem situation to another. Thus a problem consists of'an

initial state, together with all of the-states which may be obtained

from the initial state by, successive moves. One or more of these

successor states is classified as a goal state.

For example, the problem might be to prove a given theorem in

symbolic logic. The initial state would be the set of premises of the

theorem, a collection of well-lormed,lOrMulas. A state of the problem

would be any collection of well-formed formulas which could be obtained

from the initial set by successive application of the rules of logic.

The application of a simple rule of logic to add a new well-formed

formula to those. previously obtained_would constitute a permitted step

or transition from one state to the next. A goal state would be any set
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of well-formed formulas which included the desired conclusion of the

theorem.

Ageneralizatiotrof the concept of a state -space representation

for a problem is the analogous structure for an N-player game. A

problem may then be considered a 1-player game; examples of 2-player

games are chess, checkers, and tic-tac-toe. A state is now defined

as any configuration of the game, with the additional information as

Rio to which player has the move included in the description of the game

configuration.
1

For example, a state in chess is any legally reachable

.position of the piecesicttiither with the information that White (or

Bieck) has the move. The legal moves of the game determine the transi-

tions from state to state. In the game tree, the opposing players

4
typically have_iifferent gOal-states or disjoint sets of Oval states.

The game tree for 2-pile Nim is depicted in Figure 1.

One goal of artificial intelligence research has bee , program

high-speed computers to solve problems in logic, lo play games-such as

chess and checkers, or to make decisions based on available information

in arbitrarily specified situations to obtain the most favorable prob-

able outcome. Thus an entire branch of this research is devoted to

obtaining efficient_search algorithms by means of which the computer

can "look ahead" in the state-space or game tree, or "foresee" the

possible outcomes following a particular choice. Nilsson discusses

"breadth-first" and "depth- first" algorithms for searching within the

state-space or game tree, as well as strategies that combine features

of these two apprOaches.

1
Exceptions are games in which players move simultaneously without
knowledge of opponentsrmoves.
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FIGURE 1. Game tree statt-space)

for 2-pile Nim.

Three matchsticks are placed in
one pile, end two in another. The
object of the game is to be the
player to remove the last match.
Each player in his turn may take
away as many matchsticks as he
wishes, but only from one pile.
Each state is designated by a
pair of numbers representing the
matches remaining in the respect-
ive piles, and by a subscript
denoting the player who has the
move.



Since for most problems or games the lumber of possible bracc;--a

rapidly becomes astronomical,. the_field of choice must somehow be

narrowed. In order to avoid searching to the very end of every path,

a value may be assigned to each state based on an observable feature of

that state, which represents a measure of expectation for future success.

An example of this technique is the use of "positional judgment" in

chess whereby such features as "control of the center" end "safety of

-the Xing" render a position desirable or undesirable. Once criteria

for such an evaluation have been established, the-search algorithm may

be constructed so as to look only n moves into the future, to cal-

culate the evaluation function for the terminal states thus reached, and

to stake a choice which maximizes the minimum value of all terminal states

resulting from that choice (Nilsson, 1971, p..138). That is, under the

assumption that the player's opponent(s) make the best possible moves in

4 Tall cases, such an algorithm maximizes the expectation of success. A.

modification of the above "Tainimax"-procedure which further reduces the

number of states in the search is to make a selectionhised on certain

pre-specified heuristics of the moves whose continuations are to be

investigated.

The "General Problem-Solver" of Newell,.Shaw and Simon (1959)

embodies a kind of depth-first search algorithm in which the first object

of the_program is to identify a subgoal; state which might eventually lead

to solution of the main problem. The subgoal state is chosen to be "less

distant" in some suitable sense from the goal state, than is the initial

state. When such a subgoal has been identified, control switches to the

task of attaining the subgoal, prior to returning to the main problem.

This technique is to be applied recursively, until a string of attainable
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subgoals has been-generated that extends from the problem's initial

state to its goal state.

With the General ProblemSolver, Newell, Shaw and Simon coat closest-

La the area of artificial intelligence to caking the position that

utilization of the subgoal and subproblem' structure of a problem is fumda-

metal to efficient problem-solving.- .An-the present paper, the authors

hitethesize that human problem-solving is-demonstrably'governed by

identifiable subproblems and subgoals within the state-space.

The geometry theorem proving machine of Geleriter (1959, 1960)

utilizes the "syntactic symmetries" of a problem to facilitate the

search within the state - space. When the program has succeeded in reach-

ing a particular state, it-generates those states hich are syntactically

equiva:ent, in effect equivalent by symmetry, to the state that was

reached, thus obviating the necessity of reproducing all the equivalent

paths. Such a program is more efficient in cases where symmetry exists.

fibs present paper assorts the fundamental importance of the symmetripa

of a problem in influencing the human problem- solver's behavior.

S. Artificial Vs. Human lntelliuence

The methods that have been mentioned thus far are all directed

towards more efficient machine programming of problem-solving capa-

bilities. While these techniques have often been motivated by some

introspectively obtained information as to how a human being might solve

the same problem,- their main purpose has been effective computer pro-

gramming. Now let us turn our attention to a different goal, namely

the application of aritificial intelligence to the examination, under-

standing, and modelling of human behavior.

..



One approach taken by artificial intelligence researchers has been

to simulate human problem-solving, human information processing, or

human perceptual capabilities.' Here the criterion 'for success has not

been any claim that the program actually resembles the way people think,

but rather its success in generating human-like behaviors. It is of

course impossible to do justice to these programs in a brief review.

Perceptual problems such as mechanical procedures for interpretation of-

depth in two-dimensional scenes (Guzman, 1968) are included among the

investigations reported by Minsky and Papert (1972). They also discuss

Piaget's conservation experiments from the standpoint of the acquisition

of descriptive and deductive procedures. Progress has been made towards

the machine interpretation of natural languages (Winograd, 1971). Many

efforts along these lines, however, are subject to the limitation that

the programming methods employed do not lend themselves to further

generalization or extension.-

In a different approach from that of trying to simulate human

behavior with the computer, Newell and Simon (1972) propose a comprehensive

model for the human problem solver as an information-processing system.

They introduce a "problem space" to represent the task environment within

the information vrocessing system; then they postulate that human problem-

solving takes place by means of a search in such a space.

According to Newell and Simon, a problem space consists of:

"1. A set of elements, U, which are symbol structures, each
representing a state of knowledge about the task.

2. A set of operators, Q, which are information processes,
each producing new states of knowledge from existing states
of knowledge.

3. An initial state of knowledge, uo, which is the knowledge
about the task that the problem solver has at the start
of problem solving.



4. A problem, which is posed by specifying a set of final,
desired states G, to be reached_by applying operators
from Q.

5. The.total knowledge available to a problem solver when he
is in a given knowledge state, which includes :

(a) Temporary dynamic information ...

(b) The knowledge state itself ...

(c) Access information (to memory)
(d) Path information about how a given knowledge state

was- arrived at ...

le) AuceLa information to other knowledge states that
have been reached previously ...

(f) Wsrence information ..."

Newell and Simon seek to model observed human performance in problem-
_

solving tasks such as cryptarithmetic, logic theorem-proving, and chess.

The first four components of Newell and Simon's definition of the
11'

problem space correspond to taking the state-space representation of

the problem as described by Nilsson, interpreting a "state of the

problem" as a "state of knowledge about the problem," and incorporating

the whole into the information processing system. Rather than combine

the problem and the problem solver into one system as Newell and Simon

have done, the authors of the present paper prefer to regard them as

two separate but interacting Systems. Other researchers (Carr, unpub-

lished; Menzel, 1970Lalso favor the preservation of the distinction

between problem, and problem solver, utilizing a feedback loop and

various decomposition and extension theorems (Arbib, 1969) to generate

the successive states of each system. Newell and Simon obtain what

they call the "problem behavior graph" of a subject in the "external

problem space"--this is the analogue in their model of the paths within

the -state -space representation which are to be the main objects of

study in the present paper.
.
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In a less general. context E. M. Johnson (1964) proposes an inform-

ation processing model simulating the observed behaviors of subjects

solving concept formation problems (Bruner, Goodnov and Austin, 1956).



II/. Conservation Operations and Symmetries

A. Background

The correspondence between conservation laws and symmetries of

nature is a well-known concept in modern physics. For example,

conservation of momentum derives from the invariance of physical' inter-

actions under spatial translations, conservation of angular momentum

from rotational invariance, and conservation of energy from invariance

under time translations (Feynman, 1965; Wigner, 1964).

The fact long_remained unobserved that such a correspondence ex-

isted as a general principle. In some cases physicists became aware of

and successfully expressed a conservation law prior to understanding

that the law actually derived from a known symmetry of the phySical

world--for example, in the cases of conservation of momentum, angular

momentum, and energy. In other instances the symmetry was well-known,

and physicists proceeded to define an observable whose conservation

followed automatically from the fact of obedience to the symmetry.

Thus conservation of parity, for instance, follows from the supposed

invariance of physical interactions under spatial reflection. Such

newly defined observables proved immeasurably useful when it was learned

that on a sub-atomic level, symmetries such as spatial reflection which

had heretofore been taken for granted were subject to violation, and

non-conservation occurred.

Finally there were some well-known conservation laws, based on

which previously unknown symmetries could be defined. Thus conserva-

tion of electric charge can be interpreted as a consequence of invariance
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under rotations in an abstract mathematical space.
2

It is now understood that the pairing of a conservation law with

a symmetry in physics may. be regarded as a mathematical rather than an

empirical relationship, which follows from the mathematical theory of

Lie groups. This relationship asserts that to every set .of observables

corresponds a certain algebra of observables; and to every such algebra

corresponds a group.- If the values of the-obseiltables are conserved,

i.e., unchanged as the system develops in time, then it turns out that

the group elements describe physical symmetry transformations of the

system.

B. The Structuralist Methodology

The group is the paradigm in mathematics-of the methodology which

has been termed "structuralist" (Piaget, 1970; Lane, 1970). A group

is a set, closed under an associative binary operation, possessing an

identity element, amd in which each element has a corresponding. inverse.

The set of symmetry transformations of a system always forms a

group. Any pair of symmetryriiansformations may be performed succes-

sively to generate a third symmetry transformation, defining an asso-

ciative binary operation. The identity transformation is always included

as a symmetry by convention, and to every symmetry transformation

corresponds the inverse transformation which returns the system to its

initial configuration (Wigner, 1959).

The structuralist methodology has been applied to fields of study

as diverse as anthropology (Livi-Strauss, 1963, 1969), linguistics

(Harris, 1951), and psychology (Piaget and Inhelder, 1969), as well as

2
The space is known to physicists as isotopic spin-space (Eisenbud and
Wigner, 1958).
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to mathematics (Bourbaki, var.). According to Piaget (1970) a structure

in the most general sense is a system or set within wnich certain

relations (or operations) have been defined, embodying the concepts of

wholeness, transformation, and self-regulation. For example, a system

of kinship constitutes a structure in anthropology as does a group in

mathematics.

In Piagetian developmental psychology, the conservation operations

--conservation of number, volume, quantity, 'etc.--are the transforma-

tions which govern the cognitive structures assumed to underlie an

individual's behavior (Ginsburg and Opper, 1969). The acquisition of

these conservation operations by children defines sequential stages

in their cognitive development.

In view of the parallel fundamental roles played by group structures

in mathematics and the aforementioned cognitive structures in develop-

mental psychology, it is natural to try to look at the acquisition of

Piagetian conservation operations as equivalent to the acquisition of

a group of symmetry transformations.

For an observable (such as number, quantity, etc.) to be conserved

means in fact that when a given state is somehow transformed into an

altered state, the value of the observable is unchanged from its initial

value. Of course for the second state to be regarded as different from

the first at all, there must be at least one other observable which does

change in value under the transformation. Such an observable is not

conserved by the transformation.

Given a sot of states and a set of relationships among them (for

example as discussed in Section II, the permissible moves which take

one state of a problem or game into another), a symmetry transformation
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may be defined as a one-to-one mapping from the set'of states onto it-

self which leaves invariant the specified relationships among the

states. Any collection of such symmetry transformations generates a

symmetry group.

Let us say that a given symmetry group G conserves a given set of

observables when for every state S in the system, all states which may

be obtained from S by applying syMmetry operations from-0 have exactly

the same values-of the-specified observables. We shall also be inter-

ested in the maximal symmetry group possessing this property for a given

set of observables, that is, every symmetry transformation which preserves

the values of the specified observables is to be included in the group.

As an example, consider the rearrangement of n objects

on a table or two-dimensional surface depicted in Figure 2. The final

configuration of objects (described by the coordinates it 1 Ti ')1 ,

may be obtained from the initial configuration (xi, , xn) by means

of a rearrangement mapping or deformation which appropriately transforms

the points in the 2-dimensional plane. Such a rearrangement must be

one-to-one (so that two objects do not wind up at the same point) and

is taken to be surjective (so as to be invertible). Noting that any

two mappings of this kind may be applied successively to yield a third,

the set of all such mappings forms a group K. For this example, the

collection of states is the set of all possible configurations of n

objects in 2-dimensional space, for n ss 0, 1, .

To say that "number is conserved" means that when a given state

(of say n objects) is transformed into an altered state by moving the

objects around (not by adding any or taking any away), then the value

of the observable "number" remains unchanged at n. The group K defined
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FIGURE 2. Rearrangement of n objects in 2-dimensional space.

The transformation may be implemented by means of a spatial
rearrangement mapping or deformation.
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above, that is the group of one-to-one surjective mappings from IR
2

onto te, maps the set of states onto itself in such a way that a

state specified by n points continues to be specified by n points

after it is transformed, and thus has the same, value of the observable

"number.". It is not difficult to see that K fits our definition of a

symmetry group conserving that observable.

What we are saying is that in principle the acquisition of "number

conservation," that is the ability to respond that the number of objects

remains unchanged when' only the positions of the objects have been

changed, is logically equivalent to the acquisition of the 'structure of

the symmetry group K, that is, the ability to undo (invert) any rearrange-

sent transformation and to perform any tin such transformations

successively.

It may well be that stages in the acquisition of a symmetry group

structure actually correspond to the acquisition of particular subgroups.

For example, a child at some time might recognize that the number of

objects is conserved when a configuration is merely translated a certain

distance in space, without its being spread out or otherwise rearranged.

If this were to occur, we would be able to say that the subgroup of K

composed of all translations had been acquired as a symmetry structure.

The symmetry group for the above example of number conservation is

relatively complicated to define. Furthermore its elements are only

"symmetries" in a rather formal sense, namely that different- configura-

tions of n objects may successfully be treated as equivalent for some

purposes. Having argued for the reformulation of conservation opera-

tions in terms of symmetry groups, the next step is to cite examples of

systems in which the symmetries are more familiar, but where the
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identification of conserved quantities is more cumbersome. Such

examples are considered in the next sub-section. Unlike the case of

conservation of number, many examples drawn from problem-solving turn

out to be easier to describe in terms of symmetry groups than in terms

of quantities conserved by the transformations.in those groups.

The above correspondence between symmetry groups-and conserved

quantities is analogous but not identical to the correspondence in

Physics between symmetries and conservation laws outlined in Section

The major. difference is that for a physical system the time-

development operator plays a special role. A physical state evolves

in time uniquely according to the dynamics of the system; and conserva-

tion of an observable quantity means specifically that the quantity is

unchanged by the time-development. On the other hand in attempting to

describe problem-solving behaviors, one must allow for a choice of

possible moves. While there-may be many equivalent choices in 'accord-

ance with the symmetry that is present, the problem-solver must never-

tholess make only one choiie, and cannot make all of them simultaneously.

Thereforethe actual-time-development will often be asymmetrical.

Thus for a physical system conservation is defined with respect to

the time-development operator only, and states that are_conjugate by

symmetry remain so as they develop in time. In the state-space of a

problem or game, however, we look at the group. of all transformations

Which conserve the values of the specified.observables, a group which

most often does not include any transformation which effects the actual

time-development.



C. Symmetries in the State-Space Representation

The characterization of the "states" of a system is the essential

first step cybernetics and virtually all artificial intelligence

research. Specification of two states as distinct means that they

differ in the value of one or more observable*, i.e., in a quantity

Which is not conserved by operations connecting the two states.
3

Alternatively, characterization of.two states as equivalent for the

purpose of solving a given problem means that they have the same values

for the observables relevant to that problem; in fact they are equivalent

modulo a symmetry transformation which leaves invariant the values of

those observable* and preserves the relationships among the states.

1. Tic -Tac -Toe

For a simple example, consider the state-space representation of.

the game Tic-Tac-Toe. There are nine distinguishable states which can

be reached by the first move of the first player. However, modulo the

rotation or reflection symmetry, only three distinguishable states exist

(Figure 3). In constructing the state-space representation for Tic-Tac-

Toe, one could choose to represent all the distingUishable states of the

system, thus obtaining a very large state-space; or one could use the

much smaller state-space obtained by regarding those states related by

. symmetry as equivalent. Choice of the smaller state-space corresponds

to "reduction" of the state -space diagram modulo the symmetry trans-

formations.

Thus in originally specifying the state-space representation -for

3
It should be remarked that the value of an observable which character-
izes a state need not be a numerical value. For example, the observable
"color" might have the value red, green, or yellow, in specifying the
states of a"traffic directional system.
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FIGURE 3. Tie-TaoToe states eouivalent by



a problem or game, one must make a_choice: to incorporate or to

neglect the available symmetries. From the standpoint of efficient

problem - solving, the machine programer will try to incorporate as

such of the symmetry as possible. However, in studying actual human

problem-solving, we must take into account the possibility that the

subject solving a problem or playing a game does not necessarily

perceive all of the symmetry which is in fact present. Therefore if

we are wasp his behaviors faithfully, we must begin with the expanded

state-space representation of the problem or game.

Tic-Tac-Toe provides an example of a game in which the rotation

and reflectioi symmetry is easily recognized, but the corresponding

conserved quantities are cumbersome to define. For example, one such

quantity would be the number of X's in corner squarei; another, the

number of O's in corner squares. These numbers are unchanged by the

rotation or reflection operations. In order to characterize the

distinguishable states completely, it would still be necessary to

separate the situation of two X's (or 0's) in opposite corners from

two X's (or 0's) in adjacent.corners; this could be done by means of

still another numerical observable. Similar observables can be

defined which describe the occupancy Of the side squares and of the

center square. In learning the game of Tic-Tac-Toe, one of the steps

might be to realize that if the first player has put an X in the center,

the second player can force a draw if he places an 0 in any corner,

but loses if he places an 0 in any side square. This formulation

clearly incorporates the symmetry in its emphasis on the geometric

property of "corner" or "side." It can be restated in terms of the

numerical observables defined above.
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A game isomorphic to Tic-Tac-Toe may be described as follows. The

integers 1, 2, , 9 are written on ei pad, and the two opposing players

take turns, each selecting one of the numbers as his own. Neither player

may select a number already taken. The goal is to obtain any three

`mumblers which add up to exactly fifteen. Figure 4 illustrates the

isomorphism between this game and Tic-Tat-Toe. A player trying to learn

this game would not have available the perception of geometric symmetry

which is presented by the Tic-Tac-Toe grid. Unless he had prior famil-

iarity with the magic square, he would have to seek such rules as, "If

the first player chooses 5, then the second player oust pick an even

number in order to avoid losing." Posing the problem in this fashion

highlights the search for the relevant observables (those which are

important to formulation of a successful strategy), which of course,

unbeknownst to the player, are just those 'observable, which are con-

served by the Tic-Tac-Toe symmetry7-"even numbers selected," "odd

numbers excluding 5," etc.

In short, the game of Tic-Tac-Tot illustrates (a) that symmetries

may be more convenient than the quantities conserved by those symme-

tries for formulating the notion of equivalency among states, (b) that

symmetries and conserved quantities are however logically interchange-

able, and (c) that the "rules of the game" may be reformulated in such

a fashion as to make identification of the conserved quantities easier

or more convenient than characterization of the symmetries.

2. Symmetry in 2-pile Nim

The complete state-space for the game of 2-pile Nim was depicted

in'Figure 1. While the initial configuration of 3 matchsticks in the
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FIGURE 4. Magic Square for the integers 1, 2, ... , 9.

This illustrates the isomorphism between the numbo: selection
game described in the text and Tic-Tac-Toe.
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first pile and 2 in the second is not symmetrical, it is easy to see

that a certain subspace of the state-space is symmetrical, with respect

to exchange of the number of matchsticks in the two piles (Figure 5).

That is, the state labelled (2,1) with player A to move is equivalent

or cordueate to the state labelled (1,2) with player A to move. If

player A has a winning strategy in the first situation, he will have an

equivalent winning strategy in the second. The "reduced" state- space-

for a sub-game of 2-pile Dim is indicated in Figure 6.

Thus it need not be the entire game or problem which possesses a

symmetry; it is meaningful to discuss the symmetry of a subgame or

subproblem.

Finally we remark that while perception of the symmetry in 2-pile

Rim does not of necessity mean perception of the winning strategy, it

is strongly suggestive. The number of matchsticks in the first pile

alone is not conserved by the symmetry operation; but the sum and the

difference of the numbers of matchsticks in the two piles are conserved.

This suggests that the winning strategy should be formulated solely in

terms of these quantities. In fact, the first player can always win by

following the rule, "Make both piles equal," or "Make the difference

between the numbers of matchsticks in the two_piles equal to zero."

3. A Checkerboard Problem

A well-known problem presents the would-be solver with an ordinary

checkboard from which two opposing corner squares have been removed, as

depicted in Figure la. The problem-solver is permitted to cover any

two horizontally or vertically adjacent squares at a time with a paper.

clip. By means of a sequence of such moves, the goal is to cover all

of the squares in the original layout.
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FIGURE 5. A symmetrical subspace

of the 2 -vile :aim state-space.

Compare with Figure 1.



subspace of the 2 -pile Nim state-space.



FIGURE 7a: Initial configuration for ,a, checkerboard problem.

141.1.+APArge.. ....01,0,11.0.101nat

FIGURE 7b. More difficult proposition of the checkerboard problem.
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The key to solving this problem is to recognize that the permitted

operation of covering two adjacent squares leaves unchanged the quantity

"Nb minus Nw," where Nb is the number of white squares remaining, and

Nw the number of black squares remaining. However the initial value

of this quantity is 2, and its value in the desired goal state is O.

Consequeitly, tne problem as posed is impossible.

Let us construct a state-space forthe-Checkerboard Problem as

follows; A state will be any configuration of black and white squares

(smaller-in dimension than 8x8) having the checkerboard property that

squares of the same colOr are always diagonal to each other. The

state containing no- squares, since it is the goal state, must also be

included in the state-space; for this reason the state-space must be

larger than the collection of states which can be reached by legal

moves from the initial state.

Once the fact that the permissible moves-conserve the quantity

Nb - Nw is noted, then it becomes immediately apparent that the above

state-space is composed of disconnected component subspaces, correspond-

ing to different values of Nb - Nw; i.e., it is impossible, by legal

moves, to travel from one such component subspace to another. The

initial state and the goal state simply occur in different components.

This problem is unusual in that the transformations which do the con-

serving (of Nb - Nw) are the legal moves themselves, which are thus also

"symmetry transformations" in the sense discussed above.

Solution of the checkerboard problem may be made considerably more

difficult by _proposing it without the shading offthesquares (Figure-

lb). This removes a perceptual feature which is a clue to identifying

the conserved quantity, but which plays no intrinsic role in the state- -
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ment of the problem itself.

Another famous problem for which the allowed moves themselves

conserve a definable quantity is the "15-puzzle" (Figure 8). The state-

space contains two disconnectedsubspaces, which can be derived

respectively from the even and odd permutations of the original con-

figuration of number tiles. For example any succession of legal moves

which restores the blank to its-original position must effect an even

permutation of the number tiles. Thus there arises a whole class Of

"impossible goal" states for any given initial state.

To sum up, several examples drawn from familiar problems or games

have been presented in which the structure of the problem manifests

itself in the state-space by means of patterns of symmetry. Alterna-

tively it is possible to identify precisely those observable properties

of the states which are left unchanged by the symmetry_operatioes.-- While

these two formulations of conservation are logically equivalent, one or

the other is frequently more convenient for describing a particular

problem situation. It is also meaningful to discuss symmetries that

may be present in the state -space of a subproblem of the main problem.

Finally the_symmetry transformations or conservation laws often provide

the key to finding the correct or "elegant" problem solution.
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FIGURE 8a. A state of the 15-puzzle.

A legal move is to slide into the blank square one of the
number tiles adjacent horizontally or vertically.
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IV. Representation of Problem-Solving Behavior

The formal correspondence between a group of symmetry transforma-

tions and the observable quantities conserved by those transformations

suggests that the acquisition of symmetries may be as fundamental to

cognitive development as is the acquisition of conservation operations.

We have seen in several problem situations how the presence of symmetry

may be represented in the state-space.

A second feature of a problem which is susceptible to study util-

izing the state-space is its infrastructure of subproblems. It has

been commonly held that an effective problem-solving technique is to

establish subproblems or subgoals whose solution or attainment might

assist in the conquest of the main problem. Polya (1945) suggests such

an approach in discussing his problem-solving "heuristics;" it also

forms the basis for Newell, Shaw and Simon's "General Problem-Solver"

discussed in Section II.A above, and suggests to Nilsson (1971, p. 80)

one way to reduce the state-space. But to establish rigorously the

role of such identification of subgoals in human problem-solving behavior

remains difficult, and psychologists are still divided even over the

assumption of "goal-directedness" (Tolman, 1948; Kimble,

1961, Sec. 13). Characterization of the subproblems of a problem as

subspaces of the state-space should assist in investigating the conse-

quences for behavior of a subproblem decomposition by the problem solver.

One may also discuss-independently the group of symmetry transforma-

tiont of a subproblem, as we did in the case of 2-pile Nim (Section

III.C). Another kind of "symmetry" whose effects may be explored is

the presence in a problem of different subproblems having identical or

isomorphic structure.
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The above considerations suggest the utility of mapping actual human

problem-solving behavior as paths through the state-space representation

of the problem. Based on the formal properties of the state-space such

as its symmetry and its decomposition into subproblems, hypotheses can

be formulated which predict properties of the paths generated. Then

the door is open to the development and empirical test of artificial

intelligence models for human problem-solving; i.e., general algorithmic

or mechanical procedures which would replicate the properties of the

paths' generated by human problem-solvers. The decision to represent

problem-solving behavior as paths through the state-space of the problem

is motivated by the desire to make precise what the data -is which needs

to be "explained" by a theory-of human problem-solving. However it does

not yet commit us. to a particular model or theory.

In practice it may not always be easy to represent behavior in this

fashion. The best experimental situation is a problem-whose states

correspond to different discrete situations of an actual physical device,

such as the 15-puzzle or the Tower of Hanoi board. Other available means

for recording a subject's behavior as a succession of states entered may

include recordings of his oral comments, his written notes, or even his

gestures and eye movements (Bartlett, 1958; Newell and Simon, 1972).

Before proceeding with further discussion we shall offer rigorous

definitions of the concepts central to the present approach. For

completeness some terms are included which have been discussed in

earlier sections.

A. Definitions

The state-space of a problem is the set of distinguishable situations
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or states of the problem, together with the permitted transitions or

moves from one state to another. The problem must specify an initial

state, together with one or more goal states.

A problem is impossible if no goal state can be arrived at from

the initial state by means of successive transitions.

A subspace, of a state-space is a subset of the states., together

with the permitted transitions which obtain from one state in the sub-

set to another state in the subset. A subproblem is a subspace of the

state-space, having a particular state designated as "initial," and s

particular set of states designated eitsubgoals. For a subproblem it

is further required that if the initial state is not ,the initial *state

of the main problem,-it can.be entered from a state outside the sub-

__

space; and if a subgoal state-is not a goal of the main problem, it can

be used to exit from the subspace-- i.e., to enter a state-of the

problem outside of the subproblem. There are often many ways to decompose

. a particular problem into subproblems, which correspond to different

choices of subgoals and corresponding choices of subspaces within the

state-space.

Two problems are said to be isomorphic if and only if there is a

bijective mapping from the state-space of the first onto the state-

space of the second, having the following properties:

1. The initial state of the first problem is mapped onto the

initial state of the second.

2. The set of goal states of the first problem is mapped sur-

jeciively onto the set of goal states of the second.

3. A transition from one state to another is permitted in the

first problem if and only if the corresponding transition

is permitted in the second.
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Two subproblems of a given problem are said to be isomorphic if they

are isomorphic as problems in-their own right.

An automorphism of a problem is an isomorphism of the problem eat°

itself. An automorphism of a problem is also called a symmetry trans-

formation or symmetry automorphism. The set of all of the automorphisms

of a problem forms a group, (cf. Sec. III.B) under the binary operation

of composition or the successive application of two automorphisms. This

group is called the symmetry group or automorphism-group of the problem.

The states of a problem may be distinguished by virtue of having

different discrete values for a set of variables calledebservables.

These observables may or may not be numerical- -they may refer to color,

position, etc. An observable is said to be conserved by a symmetry

transformation (or group of transformations) if and only if for any

state the value of that observable is unchanged by the transformation

(or group of transformations).

Let S be a state of a problem, and consider the set of all

states which can be obtained by applying automorphisms or symmetry

transformations from a group G to S. This collection of states is

called the orbit of S under the automorphism group G. Two states are

said to be Congugate, modulo the symmetry group G if they are in the

same orbit under G.

The orbits within the state-space form mutually disjoint equiva-

lence classes of states. A new -and Simpler state-space may now be

constructed canonically by considering each equivalence class as a

state in its own right--or alternatively, by selecting one representa-

tive state from each orbit. The state-space thus obtained is said to

have been reduced with respect to the symmetry group Go or reduced
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modulo G. G may be the full automorphism group of the original state-
.

space, or any subgroup thereof.

A mkt in the state-space of a problem is a sequence of states

S1, S2, ... S
n

such that for i 1, , n - 1, the pair (S S
1
>

represents a.permitted transition. A solution path for a problem (or

subproblem) is a path in which S1 is the initial state and Sn is a

goal state, with S2, .. Sn.1 neither initial nor goal state of the

problem (or subproblem).

Two paths within respective isomorphic problems are said to be

eoneruent (modulo the isomorphism) if one path is the image of the other

under the isomorphism.

We have seen above that one way to reduce the size of the state-

space is with respect to a group of symmetry automorphisms of the

problem. A second means of reduction-is with respect to the subproblem

structure, as follows. The state=space may be described (albeit non-

uniquely) as a-union of mutually disjoint subspaces, such that for any

ordered pair of subspaces, at most one transition_exists from a state

in the first to a state in the second. Then an entire subspace stay be

regarded as a state in the reduced state-space, and a transition is

permitted from one subspace to another whenever a transition does in

fact exist from a state in the one to'a state in the other. Each sub-

space,-now a state in the reduced state-space, becomes also a subproblem

of the original problem whenever a particular entry state is designated

as "initial," and any or all of its exit states are designated as

"goals." Then we say that the state-space has been reduced modulo its

subproblem decomposition.
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Finally one may address the concept of a goal- directed path within

a problem or subproblem. Roughly speaking such a path is a solution

path Which does not "double back" on itself within the state-space,

moving consistently "towards" rather than "away from" the goal state

in Which it terminates. The criteria for defining "doubling back,"

"distance from the goal state," etc. are for the present to be estab-

lished in the context of the specific problem under consideration.

The preceding definitions focus on the states and the permitted

transitions between them. Let us remark that in any actual problem,

at least a portion of the state-Space can be generated from the initial

state by means of pre-specified rules of procedure (or operators).

The operators have verbal descriptions making reference to the values

of certain observable: for the states on which they act. The goal

states may likewise be specified as a class by making reference to the

specific properties required of them - again, values of certain observ-

able,. These observablea-may-in turn be derived in some complicated

fashion from the observable, with respect to which the operators are

defined.

But the state-space formalism is predominantly concerned with what

we may call "problem structure," rather than with alternative means of

problem description or with the implications of different embodiments

of a single problem.

3. Paths Generated byproblem-Solvers

In problem-solving it may be assumed that the solver acts sequeu-

t4ally upon problem situations (states) to generate successor states,

a,process which can be described by means of paths through a state- space-
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constructed by the researcher. It is not suggested that the problem-

solver "perceives" the state-space as an entity during problem-solving.

The syimetry properties which have been discussed are formal properties

of the state-space, which may (as in Tic-Tac-Toe) or may not (as in the

Magic Square, Sec. III.C) correspond to geometrical or perceptual

properties of the problem readily apparent to the problem- solver.

The state-space description is limited in its immeCate applic-

ability to localized problem-solving episodes-during which the solver

"understands" the rules of procedure, and is able to discriminate between

the different values of the perceptual variables which characterize the

states. The acquisition of- these rules and discriminative abilities

prior to the commencement of problem-solving is not explicitly under

discussion, although we are intensely interested in such processes.

during problem-solving as they manifest themselves in altered patterns

of behavior.
4

Nevertheless, some notion of how one intends to proceed from the

study of local problem-solving episodes to an understanding of the global

process of cognitive change needs to be made explicit, or else one may

be foredoomed to conduct a series of merely formal exercises. The

present authors view the acquisition of symmetry group structures during

problem-solving as an important means of making this transition. The

fact of which symmetries are to be incorporated and which are to be

neglected ultimately determines which states are to be treated as

equivalent and which as distinct. In addition we believe that such

4
Thus Newell and Simon (1972, p. 4) state, "The study is concerned,

primarily with performance, only a little with learning, and not at
all with development or differences related tcrige."
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manifestly global changes as Piaget's cognitive stages can Be described

in principle in terms of the acquisition of symmetry group structures

(Section III.B).

The approach at this stage of the research has been to formulate

hypotheses respecting the paths generated by human problem solvers

in the -state -space of a problem. Such hypotheses are motivated by the

formal properties of the state-space under discussion and represent the

anticipated effects of the problem structure in shaping problem-

solving behaviOr. The following hypotheses of a more-or-less general

nature are suggested.

Hypothesis 1. In solving a problem the subject generates

non-random-paths in the state-space repregentation of

the problem. Solution paths generated by_the problem

solver tend to -be goal-directed, and segments of

solution paths also form portions of goal-directed

paths.

Hypothesis 2. Given a-decomposition of the state-space of

a problem into subproblems satisfying the conditions for

the reduction procedure described in Sec. IV.A, then

(a) subproblem solution paths tend to be subgoal-

directed, and (b) when subgoals are attained, the

paths exit from the respective subproblems.

Hypothesis 3. Identifiable stages occur during problem-

solving corresponding to the solutions _of subproblems.

That is, paths occur which do not constitute solutions

(or else do not constitute the most direct solutions)

to the problem, but which do constitute solutions to
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all of the isomorphic subproblems (of a particular

structure) entered by the path.

It may be that the validity of Hypotheses 2 and 3 depends on the

particular way that the state-space. of the problem is decomposed into

subproblems, since such a decomposition is not unique.

Hypothesis 4. When two subproblems of a problem have

isomorphic state-spaces, the problem solver's

respective paths through these subproblems tend

to be congruent.

Hypothesis 5. Given a symmetry group G of automorphims

of the state-space of a problem, there tend to

occur successive paths congruent modulo G in the

state-space. Such occurrences often culminate in

the solving of the problem.

Elaborating on Hypothesis 5, it would be extremely interesting if

given a symmetry group G for a problem, one could demonstrate stages

corresponding to the acquisition of subgroups of G. Hypothesis 5

(symmetry acquisition) is suggestive of the "insight" phenomenon which

changes the gestalt of the problem solver (Allport, 1955; Wertheimer,

1945).

These hypotheses are not to be regarded as a definitive list, but

rather as preliminary and indicative of the kind of analysis of the

effects of problem structure that is possible. While some of the

hypotheses may seem intuitively obvious or necessary, it is not dif-

ficult to construct mechanical problem-solving mechanisms which violate

any or all of them.- -Thus, if valid, they represent fairly general con-

straints on the properties which artificial intelligence models must
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display in order to simulate humen problem-solving adequately.

The hypotheses focus on paths within the state-space, rather than

on the operators that generate these paths. Different formal rules of

procedure may sometimes lead to the same transitions or paths, just as

different descriptions of a mathematical function may nevertheless

define the same mapping. Thus to the extent that one seeks to describe

.behavior using operators which have precise domains of states and act

on these within the state-space, the present formalism will be satis-

factory. Hypothesis 3, for example, allows the interpretation of

solution paths within isomorphism Classes of subproblems as the appli-

cation of a single operator which maps initial states of such sub-'

problems into goal states.

However different descriptions of the same operator can of course

imply different problem-solving strategies, just as different embodi-

ments of a problem state -space can elicit different strategies. We

are not seeking at this point to study the particular rules which

subjects employ, but rather the structural features of the behavior

they exhibit. This is the sense in which the present paper is concerned

with problem-solving structures rather than with strategies.

In order to investigate empirically hypotheses such as the above,

it seems natural to begin with a problem whose state-space possesses

somewhat more symmetry than the problem environment presents perceptual-

ly, and which displays a rich subproblem structure. The Tower of Hanoi

problem was selected for empirical investigation for these reasons.

Classes of subproblems exist which are isomorphic to each other, and the

state-space of each subproblem as well as that of the main problem

possesses symmetry. In Section V the above hypotheses are interpreted
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in terms specific to the Tower of Hanoi problem.

Let us remark again that we are regarding the problem as distinct

from and exterior to the problem solver. In principle the state of the

problem (more generally, the state of the environment) may be regarded

as observable, the full state-space of the problem definable, and its

structure ascertainable.. On the other hand the state of the problem

solver, and the mechanisms for change of that state; are to be inferred

from the trace of the problem solver's behavior in the state-space of

the problem. Thus we agree with the postulate of a feedback loop be-

tween the problem and the problem solver, rather than choosing to

incorporate the two systems into a single information processing system

(cf. Sec. II.B).
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V. The Tower of Hanoi Problem

In this section we seek to make the foregoing ideas concrete by

describing a problem that has been used fOr empirical investigation

(Luger, 1973). The Tower of Hanoi is a well-known problem that has

been extensively discussed (Dudeney, 1907; The Mathematics Teacher,

1951; Gardner, 1959). Its state-space is depicted by Nilsson (1971),

and it has already been posed as a problem eminently suitable for

mechanical problem-solving (Hormann and Shaffer, undated).

In the Tower of Hanoi problem as we study it, four concentric rings

(labelled-1,2,3,4 respectively) are placed in order of size, the largest

at the .bottom, on the first of three pegs (labelled A,B,C); the apparatus

is pictured in Figure 9. The object of the problem is to transfer all

of the rings from peg A to peg C in a minimum number of moves. Only one

ring may be moved at a time, and no larger ring may be placed above a

smaller one on any peg.

.Figure 10 is the complete state-space representation of the 4-ring

Tower of Hanoi problem. Each circle stands for a possible position or

state of the Tower of Hanoi board. The four letters labelling a state

refer to the respective pegs on which the four rings are located. For

example, state "CCBC" means that ring 1 (the smallest): ring 2 (the

second smallest) and ring 4 (the largest) are in their proper order on

peg C. Ring 3 (the next to the largest) is on peg B. Only states

adjacent in the diagram are "connected" by the legal moves of the game;

that is, a permitted move by the problem solver always effects a tran-

sition between states represented by neighboring circles in Figure 10.

The solution path containing the minimum number of moves consists of
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FIGURE 9. The Tower of Hanoi board in its initial state.

( Start AAAA

00BAAA0 0
IMMO 0 0 OCC"

OCCM

00 00
0

CCCA00 000000C) 0BBBA

0 ()BBC

0 0 000 0 0
AA" 0 0 0 0 BBCB CCBC 00001ABC
0 0 0 0
00 00 0 000 0 0 0 0 0

0 0 0
BBBB 0 000 0 000 0000 0 00 .cccc

FIGURE 10. State-space representation of the 4-ring Tower of Hanoi problem.

The four'letters labelling_a state refer to the respective pegs on which the
the four rings are located. Legal moves effect transitions between adjacent
states.
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the fifteen steps from state AAAA to state CCCC down the right-hand

tide of the state-space diagram.

A. Subproblem and Symmetry Structures

The Tower of Hanoi problem has'a natural decomposition into nested

subproblems, as pictured in Figure 1.1. _-fn order to solve the 4-ring

problem; it is necessary at somt4toint4o move the largest ring from

its original position on peg A to pegIS. but before this can be done the

three smaller rings must be assembled in their proper order on peg B.

The problem of moving the three rings from one peg to another may be

termed a 3-ring subproblem, and constitutes a subset of the state-space

representation.

As can be noted from Figure 11, the state-space for 4-ring Tower of

Hanoi contains three isomorphic 3-ring subspaces, for which the physical

problem-solving situations are different by reason of the position of

ring 4 (the largest ring). Each subspace becomes a subproblem when one

of its entry states is designated as the initial state, and its exit

states are designated as goal states. The various 3-ring subproblems in

turn differ from each other in that the rings are moved between different

pegs, as well as with respect to the position of the largest ring.

Similarly each 3-ring subspace contains three isomorphic 2-ring sub-

spaces, for a total of nine in the entire state-space. The various 2-

ring subproblems differ with respect to the positions of rings 3 and 4,

and with respect to the pegs between which the rings are to be moved.

Finally each 2-ring subspace may be further decomposed into three

1-ring subspaces, comprising only three states apiece.

Each n-ring subproblem, as well as the main problem, admits of a
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FIGURE 11. Subproblem decomposition of the Tower of Hanoi state-space.

a 1-ring
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subspace

0 0 01
0 0
00 00

-45-

-4
a 3-ring
subspace



symmetry automorphism. The automorphism maps a goal state of the ra-

ring problem into the conjugate goal state which corresponds to transfer-
.

ring the n rings to the other open peg. Were the three pegs of the Tower

of Hanoi board to be arranged at the corners of an equilateral triangle,

the symmetry automorphism would represent the geometric operation of

reflection about an altitude of the triangle.

N. Discussion of Hypotheses

Next we seek to interpret the hypotheses proposed in Section IV.B

for subjects solving the Tower of'Hanoi problem. To do so.it is neces-

' sary to establish criteria for "goal-directed" paths through the state-

space of the problem-or one of its n-ring subproblems. We shall say

that a solution path through such a state-space is goal-directed if the

same state is not entered twice, and at each step the distance from the goal

state (exit state) is non-increasing. The distance between two states

in the Tower of Hanoi state-space is the minimum number of steps actually

necessary to reach one state from the other.,

Figure 12a illustrates the six mutually non-congruent goal-directed

paths through a Tower of Hanoi 2-ring subproblem; three examples of non-

goal-directed solution paths are given in Figure 12b.

For the 3- and 4-ring problems, it may be desirable to weaken the

above criterion for goal-directedness by using a coarser measure of

distance. Thus the distance between one state in the n-ring state-space

and another can be defined as the minimum number of (n-2)-ring subspaces

it is necessary to enter in order to reach the second state from the

first. A solution path through the n-ring state-space is
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`a-

1.

4.

FIGURE 12a. Goal-directed paths through a 2-ring Tower of Hnol subproblem.

There are six mutually *non-congruent goal-directed paths.

initial state

0
0 0 0

subgoal

FIGURE 12b. Examples of non-goal-directed solution paths.

initial state

subgoal
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goal directed (in the weaker sense) if the path does not enter the

same (n-2)-ring subspaie twice, and if the distance from the goal state

is non-increasing. In short,'"weak goal-directedness" corresponds to

reducing the 3-ring state-space modulo its decomposition into 1-ring

subproblems, and the 4-ring state-space modulo its decomposition into

2-ring subproblems, prior to determining the goal-directedness of a path.

Thus it is possible for a path through the 3-ring subproblem to be sub-

_goal-directedwhile a segment of the same path passing through a 2-ring

subproblem is not. A path which is subgoal-directed within every sub-

problem traversed, as well as being goal-directed may be termed strongly

goal-directed. The first diagram in Figure 13 illustrates a strongly

goal-directed path; the path in the second diagram is not.

A randomly generated path is less likely to be goal-directed than

might at first be supposed,'even when one forbids the immediate retrac-

tion of a step. For the 2 -ring. subproblem such random paths are non-

goal-directed 11 times in 32; the respective frequencies of occurrence

of random paths congruent to the solution paths in Figure 12a are:111111
4' 8' Randomly generated paths are non-goal-directed"8" TV 37'
more often in the case of the 3- and 4-ring problems.

Having distinguished "goal-directed" paths, Hypothesis 1 and.HYpoth-

esis 2a proposed in Section IV.B can be readily interpreted for the Tower

of Hanoi problem.

Figure 14 illustrates the distinction in Hypothesis 2b between paths

which do and do not exit from their respective subproblems when subgoal

states are attained.
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FIGURE 13. Coal-directed paths throuFh a 3-ring Tower of Esnoi subproblem.

Note that the slight double-back in the second diver= does not disqualify
the path from being goal-directed, since it occurs entirely inside a
1-ring subspace.

initisi state

O
O000
O

0 S
0 k 0
0000 fi 0 IbL

subgoal
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initial state

FIGURE 14a. A path illustrating RypOthesis 2b.

The path exits (*) from each 2-ring subproblem when a subgoal
is attained.

FIGURE 14b.A.-tesis2b.
The path fails twice to exit (*) from a 2-ring subproblem when a
subgoal state is attained.
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Figure 15 depicts a state in problem-solving, as postulated in

Hypothesis 3, where the 2-ring subproblem is consistently solved in the

minimum number of steps, but the-3-ring subproblem is not. The state-

space has been effectively reduced modulo its 2-ring subproblem decom-

position.

Figure 16 gives several examples of congruent paths through iso-

morphic subproblems, as in Hypothesis 4.

Finally Figure 17 illustrates an instance of Hypothesis 5 - two

successive paths through the Tower of Hanoi state-space congruent

modulo the symmetry automorphism.

Subjects' Problem- Solving Behavior

In Figure 18 are pictured the actual paths through the state-

space generated by two adult subjects solving the Tower of Hanoi problem.

Each subject was shown the Tower of Hanoi board, and given verbal instruc-

tions. His moves on the board, as well-as his comments and conversation

with the investigator, were recorded on tape.

The behaviors of Subject A conform perfectly to all 60 of the

proposed hypotheses. The paths are both goal- and subgoal-directed,

and exit from a subproblem whenever a subgoal state is attained

(Hypotheses 1 and 2). The first two trials contain five instances of

solution of the 2-ring subproblem in the minimum number of steps, and

two instances of solution in more than the minimum number, while the

3-ring subproblem has not yet been solved by the shortest path

(Hypothesis 3). Trial 1 beautifully illustrates congruent paths through

two isomorphic 3-ring subproblems (Hypothesis 4). Finally, trial 2 is

interrupted (with the comment, "Could.I try again? This is annoying



initial state

0 0
0 000

0-4,,(4*0\
-00 \or 0 O

e

FIGURE 15. A stage in problem-solving.

The 2-ring subproblem is consistently solved in the minimum number of
steps, while the 3-ring subproblem is not. The state-space has been
effectively reduced modulo its 2-ring subproblem decomposition.

initial state

FIGURE 16. Congruent paths through isomorphic subproblems.

All three paths through the 2-ring subproblems in Figure 16 are
congruent to each other.
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FIGURE 17. Two successive paths congruent modulo the symmetry
automornhism.
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FIGURE 18, Tower of Hanoi:
Subjects' zatbs throu'lh_
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HN
/, and trial 3 (the shortest solution path) follows as the image of

trial 2 under the symmetry automorphism -_peg B 4) peg C (Hypothesis 5).

Subject B displays morecomplicated problem-solving behavior.

Both trials 2 and 3 contain segments which are not subgoal-directed

(Hypothesis 2a), although they are goal-directed paths in the weaker

sense (Hypothesis 1). During trial 3 the subject actually makes an

illegal move. The second trial fails twice to exit from the 2-ring

subproblem at the lower left of the diagram, despite.having achieved

"subgoal" states of that subproblem (Hypothesis 2b). The immediately

prior comment was "I've lost my way." Thus the second hypothesis is

not fully satisfied, although it is far more closely obeyedthan would

be expected from randomly generated paths.

In trials 3-5, the subject solves the 3-ring subproblem by the

shortest path four out of six times and the 2-ring subproblem twelve out

of thirteen times, while the 4-ring problem has not yet been mastered,

(Hypothesis 3). Trials 1 and 2 display seven examples of congruent

paths (type 5, Figure 12a) through isomorphic 2-ring subproblems, as

well as nine instances of the shortest path (type 1) and one instance

of a path (type 3) non-congruent to the others (Hypothesis 4).

Finally trial 4 is interrupted, mid trial 5 follows as its image

under the symmetry automorphism; the subject deviates from the shortest

solution path only after completing the segment congruent to trial 4

(Hypothesis 5).

Thus we have seen in the case of the paths generated by two individ-

al problem solvers, illustrations of and a considerable degree of

adherence to the suggested hypotheses.
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A paper to follow by one of the authors (CFI.) tabulates the behaviors

of forty-five adult subjects solving the Tower of Hanoi problem, testing

e--,more systematically the validity of the five hypotheses we have

proposed.
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VI. Conclusion

Several authors have recently sought to distinguish "strategy"

from "structure" in problem-solving, and to investigate the relation-

ship between them (Dienes and Jeeves, 1965, 1970; Branca and Kil-

patrick, 1972). The present paper'suggests one natural way to make

this distinction. We let the structure of a problem refer to the

formal properties of its state-space representation, such as the symmetry

automorphisms which are present and the subproblem decompositions which

, are possible. We consider the subject's cognitive structures to include

the conservation operations, symmetries, and subproblem decompositions

that he perceives in the problem situation. These determine the states

that he treats as distinct and those he treats as equivalent. They

may change during the course of problem-solving, leading to effective

reduction of the state-space. The subject's behavior can be faithfully

mapped as long as the state-space representation that is utilized by

the researcher is sufficiently detailed, in that it does not treat

states as equivalent which the subject treats as distinct.

We let the term strategy refer to particular rules or procedures

for taking steps within the state-space once the latter has been

established. These are analogous to the search algorithms employed

in mechanical problem-solving. Different individuals clearly use

different strategies in solving the same problem, and the same

individual often employs different strategies in solving different but

isomorphic problems. The present paper does not - examine strategies

per se, but hypothesizes that even in the context of different strat-

egies, certain patterns in behavior tend to occur as a consequence of
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acquisition of elements of the problem structure by the subject.

Artificial intelligence models will have to incorporate such structural

effects in order to adequately simulate human problem-solving behavior.

Acknowledgements

The authors would like to thank John Carr of the Moore School of

'Elictrical Engineering and Gail Zivin of the Graduate School of

Education at the University of Pennsylvania for many interesting

discussions and valuable suggestions.

-58-



References

Allport, F.H., Theories of Perception and the Concept of Structure.
New York: Wiley, 1955.

Arbib, M.A., Hebraic Theory of Machines, Languages and Semigroups.
New York: Academic Press, 1969.

Banerji, R.B., Theory of Problem Solvinfl. New York: American Elsevier
Publishing Co., 1969.

Bartlett, P.C., Thinking. New York: Basic Books, 1958.

Bourbaki, N. Elements of Mathematics - Series. Reading, Mass:
Addison-Wesley.

Branca, N.A., and Kilpatrick, J. "The Consistency of Strategies in
the Learning of Mathematical Structures," Journal for Research in
Mathematics Education, Vol. 3, No. 3 (May 1972).

Bruner, J.S., Goodnow, J.J., and Austin,- GA., A Study of Thinking.
New York: Wiley, 1956.

Carr, JAL, Unpublished Lecture Notes, Moore School of Electrical
Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.

Dienes, Z.P., and Jeeves, M.A., Thinking in Structures. London:
Hutchinson Educational, 1965.

Dienes, Z.P., and Jeeves, M.A., The Effects of Structural Relations on
Transfer. London: Hutchinson Educational, 1970.

Dudeney, E.r, Thedinteibury Puzzles, 1907.

Eisenbud, L., and Wigner4-E.P., Nuclear Structure. Princeton, N.J.:
Princeton University Press, 1958.

Feynman, R.P.t Lectures on Physics, Vol. III. Reading, Mass: Addison-
Wesley, 1965.

Gamow, G., One, Two, Three ... Infinity. New York: Viking Press, 1947.

Gardner, Mg Mathematical Puzzles & Diversions. New York: Simon and
Schuster, 1959.

Gelernter,-H., "A Note on Syntactic Symmetry and the Manipulation of
Formal Systems by Machine," Information and Control, 2, 80-89 (1959).

Gelernter, H., "Realization of a Geometry Theorem Proving Machine,"
Proceedings of 1959 International Conference on Information Proces-
sing, 273-282. Paris: UNESCO, 1960.

Ginsburg, H., and Opper, S., Piapet's Theory of Intellectual Development:
an Introduction, Englewood Cliffs, N.J.: Prcntice-Hall, 1969.

-59-



References (continued)

Guzman, A., "Computer Recognition of 3- Dimensional Objects in a Visuil
Scene," Cambridge: Massachusetts Institute of Technology,
MAC-TR-59,-1968.

Harris, Z. S., Structural Linguistics. Chicago: The University of
Chicago Press, 1951.

Hormann, A.M., and Shaffer, S.S., "Problem Solving by Artificial
Intelligence." Santa Monica California: Systems Development Corp.,
undated manuscript.

Johnson, E.S., "An Information Processing Model of One Kind of Problem
Solving," Psychological Monographs, 78, No. 4 (1964).

.

Kimble, G.A., Hilgard & Marquis' Conditioning and Learning. New York:.
Appleton-Century-Crofts, Inc., 1961.

Lane, M., Introduction to Structuralism. New York: Basic Books,
1970.

Levi-Strauss, C., Structural Anthropology. New York: Basic Books, 1963.

Lvi-Strauss, C., Elementary Structures of Kinship. Boston: Beacon,
1969.

Luger, G.F., Ph.D. Thesis, Graduate School of Education, University of
Pennsylvania, 1973.

Mathematics Teacher, 44, p. 505 (1951).

Menzel, W., Theorie der Lernsysteme. Springer Verlag: Berlin, 1970.

Minsky, M., & Papert, S., Progress Report of the MIT Artificial
Intelligence Lab. 'Boston: MIT Press, 1972.

Newell, A., Shaw, J.C., & Simon, H.A., "Report on a General Problem
Solving Program." The RAND Corporation Paper P-1584 (Feb. 1959).

Newell, A., & Simon, H.A., Human Problem Solving. Englewood Cliffs,
N.J.: Prentice-Hall, 1972.

Nilsson, N., Problem Solving Methods in Artificial Intelligence.
New York: McGraw-Hill, 1971.

Piaget, J., Structuralism. New York: Basic Books, 1970.

Piaget,'J.,.& Inhelder, B. The Psychology of the Child. New York:
Basic Books, Inc., 1969.

Polya, G:, How to Solve It. Princeton, N.J.: Princeton University
Press, 1945.

--60-



References (continued)

Tolman, E.C., "Cognitive Maps in Rats and Men," Psychology Review,
55, 189-209 (1948).

Wertheimer, M., Productive Thinking. New York: Harper & Brothers,
1945.

Wigner, E.P., Group Theory. New York: Academic Press, 1959.

Wigner, E.P., "Symmetry and Conservation Laws," Proceedings of the

National Academy of Sciences, 51, No. 5 (May 1964).

Winograd, T., "Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language," Cambridge:
Massachusetts-Institute of Technology, AI-TR-17, 1971.

-61-



APPENDIX

Behaviors of Subjects So:vins the Tower of Hanoi Problem

by

George F. Luger

-February 1973

.



rI

+)
1./) tri

+)
.=

r) 0
f/1

0
MI
W

.0

+' gi03
14

*14
0

El 44O 0 0
00 r443 0
14 0 01

14p,, 0
111 4.
6).64
41

0.S4
0

63 al

is 4.40 0
'CI Co

S4 0
0-1

:sO 0
E4

-ss

Vi Ss

.41 14,-4 0
B4 $4 0
41

te
4.

tu
P.o

+P
1.4

:61W2I ri
0-1 )o.

11P

8

to
rl
so

so

8.7588888888888888888g188!;8V4888R888P-88888888888
4 444 4 .4 .4 .4 .4 .4 .4 .4 .4 rt .4 .4 .4 4 4 .4 .4 .4 .4 .4 .4 .4 ri .4 r; .4 .4 4 .4 A ri .4

,

,.....-..........., 4.1410,...,ye...mv,*;ve1114,v....." 'r.r.l......../.0.,......00 ...AI, e . '.........1.,11,....,o, Oa...7.M sow 4 4 a..0v , . ,t iv 1,vvo:

1 1

:11188888888:Z8S8R8888418:0'88i18888a8o7888888888
0-1 0-4 0-4 0-4 0-4 0-4 0-1 0-4 0-4 0A 0-4 ro 0-4 0-4 0-4 41-4 0-4 0-4 r4 0.4 0.4 r4 r4 0-1 0-4

fte.41....1....kM./.4.44ed.b.1WIL,.re...0.wMaMapIrrear....
1INCol-1 01 01 CM CU 01 01 0-1 Col-7 LAMM 01 0-1 UN CU Co10-1 minme- mcneu C11 41 Cn.* NU) 1" men liNColt CrIC1

C) C) CD C) C) C) C) C) 0-1 C) C) C) C) C) C) C) C) C) CU C) C) r-1 C) 0.4 0.4 C) C) C) CU C) C) C) C) C) C) C) C) C) C) C) C) 5:0 C)

CU 0-4 C) 04 C) C) C) C) C) C) 0-4 C) CU 0..4 C) C) C) C) C) 0-1 C) 0-4 CU C) C) C) CU CU C) C) C) 0-4 C) 0-4 0-4 C) C) 0.4 C) C) C) 0 C) ,4
rel -1 0-1 0 0-1 CU CU rl -1 0,1.* MOM r1 -7 rl CU CU .4 CV el CV uN 0 CU ri CU CU 114 1Y1 014 en 01 Al -1

1.~.16011.01.0 1 .6011.11.114

01 r4

+

r4 r4

* * 0-1 *
+ * * 0-1 *
* * 0-1 01 * * * *

* 0-1 0-1 0-1 + 0-1 .4- .4- 0-1 0-1 * * * 0-1 0-1 + * r4
* * * * + s * * * * * * + i * + * * * * * * * *

+ I 0I * * 1 1 01 * * * * * 1 1 * * * 1 + * + * 1 * * * 1 * 1 * * * + + * * * * * * *
* +*+*1****1+*+*+****1**1*1***+1***1***********

,. V. v. , I . . v. . v v

I-1 CU M.* IA VP tCCP ON 0 64 CU Col-l UM° tCO CP -1 Ce1-1 U1414 l-00 CI% Q 01 CV Ce1-1' 111\12 l-1310 CI% CP r4 M.4, UN0-1 PI I-1 r1 r1 rl el CU al AI C1,1 C1,1. CU CM CI C\I cr) cri cr) WI VI cr) Cf1 01-7 -4 4 -4 .4 -4



TABLE 1 (continued).

Totals Fraction
strongly"

goal-directed

Fraction
all

goal-directed
* + - sum

Total all subjects, all-trials 102 21 10 133 .77 .93
Total all subjects, first trial
only

33 6 6 45 .73 .87

1 = most direct solution path (not included in sum total)
* = strongly goal-directed path (goal-directed within each subproblem), excepts

the most direct solution path
+ = goal-directed path, but not strongly goal - directed
- = non-goal-directal path

Among paths generated by the random selection of successor states, in which the
retraction of a move is forbidden, less than 2/3 are goal-directed and less than
10% strongly goal-directed.
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TAKE 2. Paths of subjects through 2-ring subproblems of the Tower of
Hanoi.

Lei
4

1, 4.4, 6 = congruence class of goal-directed path
X = non-goal-directed path (Hypothesis 2a)
- = failure to exit from subgoal state of subproblem (Hypothesis 2b)

C = significant Congruence among goal-directed paths through isomorphic subproblems
NC = significant non-congruence among goal-directed paths through isomorphic

subproblems (Hypothesis 4)

Subject

1

Sequence of 2-ring subproblerks

15 5 5 3 5 1 11 5 1-5-1-1 1 5 1 1

con-

gruence 1 2 3 4 5 6 x total -

111X 1 1111 1 1 1 C 2101 0 7 0 1 30 3

2 11-11 1 11 11 11111 140000 0 0 14 1

,3 51 1 1 1 11 11 8000100 9 0

1X-11 1 1 111 8000001 9 1

5 1111 1 1111 9000000 9 0

6 1111X1.1111 9000001 10 0

7 1111 1 5 111 11 11 12 00010 0 13 0

8 12 11 11111 8100000 9 0

9- 11 1 1 1 1 60000 0 0 6 o

10 5 X4 2 1 11 11-11 111111 NC 13 10 11 0 1. 17 1

11 1 1-1-1-1 1 1 1 5 1 1 1 1 1 1.1 1 1 15 00 0 1 0 0 16 2

12 1 1 1 1 1 1 1 11 1 10 000 0 0 0 10

13 1X 1 1 1 1 3 1 5 11X 1 1 5 1 1 1.
11 1501 0 2 0 2 20

14 11 5 1 1 3 5 1 115 1 c 80103 0 0 12 0

15 1 1 6 5 1 1X 11 1 3 1 NC 8010111 12 0

1 6 1 2 1 1 3 1 1 11 1 8110000 10 0

17 1 5 3 1 1 1 1 1 6010100 8 0

1 8 1 3 1 1 1.i. i 3 3 11X1 3 111 3
1 1 C 1405 0 00 1 20
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TABLE 2 (continued).

con-
Subject Sequence of 2-ring subproblems gruence 1 2 3 4 5 6 x total

19 1 5 1 1 5 1 1 1 1 1 1 1 10 0 0 0 2 0 0 12
20 3 2 X 1 5 1 3.-1 1 1 1 1 5 1 1 1 1 1

1 1 1-1 1 NC 18110201 23

21 - 6 1 1 1-1 1-1 3 1 1 1 1 1 11010010 13

22 1 1 1 1 1 1 X 1 1 3 1 90 1 0 0 0 1 1.1.

23 1 1 1 5 1 1 3 1 5 1 1 5 1 5 1 1 1 1
C 14 0 1 0 4 0 0 19

24 111-111X 111111111 11
1 1800000 1-19

25 5 X 3 X 1 1 1 1 5 111 1 5 1 lx 1
1 X-X-1 1 5 3. 1 1 1 1 1 1 21 0 1 0 4 0 5 31

26 1 1 1 X 1 1 1 1-1 8 000 00 1 9

27 1 1 1 1 3 1 1 1 1 5 1 1 111 1 1 15 0 1 0 1 0 0 17

28 1 3 5 1 1 1 1 1 1.1 8 0 1 0 1 0 0 10

29 1 1 1-1 1 1 2 5 111 1 1 1 1-X-1 1
1 1 1 1 1 1 1 3 1 22 1 1 0 1 0 1 26

30 1 1-X 1 1 1 3 5 5-3_1,1-x 5 1 2 1 -1
1 X-1 1 1 1 5 1x 1 1 1 3. 1 N C 2 1 1 2 0 4 0 4 32

33. 13 1 3 1 1 1 1 1 5-1 1 1 13. 12 0 2 0 1 0 0 15

32 1 1 1 1 1 1 6000000 6

33 13 2 1 1 5 1 1 1 1 1 1 1 N C 10 1 1 0 1 0 0 13

34 1 3 x-x 1 1 1 1 1 1 1 1111 3 1X
1 1 1 1 1 1 1 1 1 1 1 24 0 2 0 0 0 3 29

35 1 1 1 1 1 1 1 1 1 1 1 11 0 0 0 0 0 0 13.

3 6 111311X11131-115111
1 1 1 17 0 2 0 1 0 1 21

37 11 1 5 1 5 x 1 1 5 1 1 11 111
1 C 15 0 0 0 3 0 1 19

38 1 5 111 1-1 1 1 1 1 10000 1 0 0 11

39 1 1 5 1 1 1 1 1 1 1 1 1 1 11 14 00 0 1 0 0 15
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TABLE 2 (continued).

-con-

Subject Sequence of 2-ring subproblems gruence 1 2 3 4 5 6 x total

40 1 1-1 1 1 1 1 1 1 4 1 1-1 1 1 3 1 15 0 1 1 0 0 0 17 2

41 1 1 5 1 1 1 5 1 1 1 21 9 1 0 0 2 0 0 12 0

42 1 11 1 1 1 1 1 1 1 5 6 1 1 1 1 1 1
5 1-1 1 1 1 1 1 1 1 1 1 27 0 0 0 2 1 0 30 0

43 1 1 5 5 5 5 1 1 1 1 1 C 7 0 0 0 4 0 0 11 0

44 1.1 1 1-1 1 1 1 1 1 1 1 1 13 0 0 0 0 0 0 13 1

45 1 1 1 1 1 1 6o00000 6 0

Totals 45-Subjects

J

1 2 3 4 5 6 X total -

7 C 6 NC 563 8 29 2 53 3 27 685 28

..



TABLE 3. Paths of subjects through 3-ring subproblems of the Tower of
Hanoi.

Key

A, B, C, = congruence class of goal-directed path (specific to each subject)
X = non-goal-directed path (Hypothesis 2a)

= failure to exit from subgoal state of subproblem (Hypothesis 2b)
C = significant congruence among goal-directed paths through isomorphic subproblems

NC = significant non-congruence among goal-directed paths through isomorphic
subproblems. (Hypothesis 4)

Subject Sequence of 3-ring subproblems
con-

gruence lABCLIEFX total

1 A. X B 1 X-1 B 1 1 X 1 1 C NC 6 1 2 1 3 13 1

2 1-1 A. A 1 1 1 C 52 0 7 1

3 Y:1 1 1 3 1 4 0

X -111 3 1 4 -0

5 Al 1 1 3 1 0 4

6 1 1 All 4 1 0 5 0

7 1 1A 1 1 1 51 0 6 0

8 AB11 NC 2 1 1 -0-- 4 0

9 All 21 0 3 0

10 X X 1 1 1 3 . 2 5 o

.11 1-A 1 1 B 1 1 1 NC 6 1 1 0 8 1

12 AllAll C 42 0 6 0

13 x 1 1.A BY: 1 B 1 1 51.2 2 10 0

1 4 1 A B A. l A C 2 3 1 0 6 0

15 1XX lA .21 2 5 0

16 A 1 B 1 1 NC 3 1 1 0 5 0

17 AB 1 1 NC 2 1 1 0 4 0

18 AlBCDC lE 1 NC 3 1 1 2 11 0 9 0

19 A.A 1 1 1 C 32 0 5 0

20 A X B C 1 8 1 D 1 1 N C 4 1 2 1 1 1 10 0

21 A l B C 1 1 NC 3 1 1 1 0 6- o
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TABLE 3 (continued).

con-

gruence 1 A B C D E F X total

N C 2 1 1 1 - 5 0

NC 3121 1 8 0

4 1 2 1 8 0

C 83 3 14 0

1 5 0

NC 6 1-1 0- 8 0

N C 3 1 1 0 5 0

N C 7 1 1 1 1 1 1 13 0

NC 5 1 1 1 11 4 14 3

N C 3 1 1 1 6- 0

0 3 0.

NC 4 11.1 0 7 0

C 4 14 11 2 13 0

6 0 6 0

NC 3 112 1110 10 0

N C 5 1 1 2 1 0 10 0

N C 3 1 1 0 5 0

71 0 8 0

NC 6 1 1 1 0 9 0

3 2 1 0 6 0

NC 7 3 2 11 0 14 0

14.1 1 6 0

51 0 6 0

3 0 3 0

28 321 6

Subject Sequence of 3-ring subproblems

.22 A I X 1 B

23 1XABCB 1 1

24 1AX1BB1 1
25 X1 lAllAXX lA 1 1 1
26 1 x 1 1 1

27 lA 1B 1 111

28 . A B 1 1 1

29 lA 1 B C 1 1XD1 1 l E

30 1-XAB-C-XDX1 1EX 11

31 A B 1 X 1 1

32 1-11 2

33 ABC 111 1
34 AXX1BB1CDBB1 1
35 1 1 1 1 1 1

36 1A-BCDCEF 1 1

37 A B C D C 1 1 1 1 1

38 A l B 1 1

39 lA 1 1 1111
Ito 1 1A1B1 1 1C
41 l A l A 1 B

42 lA 1BBC 11D1AAll
43 11XA11
44 lA 1 11 1
45 1 1 1

Totals 45 Subjects 6 C 21 NC

A-7



TAME 4. Subjects solving the Tower of Hanoi problem--stages corresponding
to acquisition of the most direct solutions to 2- and 3-ring
subproblems respectively (test of Hypothesis 3).

1 = most direct solution to subproblem
0 = not the most direct solution

First row: sequence of 2-ring subproblems entered
gebond row: sequence of 3-ring subproblems entered -

Third row: sequence of trials on the 4-ring problem

st acquisition of the most direct solution. This is-defined to occur at the
earliest point beyond Which more than half of any sequence of subproblems
(of the appropriate level) are solved in the most direct way.

* = point between successive paths through the 4-ring state-space congruent
by virtue of a symmetry automorphism (Hypothesis 5)

Subject
r--
1 2-ring: 1 0 0 0 0 0: 1 1 1 0 1 0 1 1 1 01: 111 1 1 1 01 111 1 1 ,.

3-ring: 0 0 0 1 0 1 0 : 1 1 1 0 1 0
4-ring: 0 0 0 0 0

2 2-ring: :111 111 :11 :1111
3-ring: 1 0 6:1:11
4-ring: 0 0 tis : 1

3 2-ring: 0 :11:11 : 1111
3-ring: 0 : 1 : 1 1
4-ring: 0 .

1 1

4 2-ring: 1 0: 1: 1 1; 1 1 1 1
3-ring: 0 : 1 : 1 1
4-ring: 0 .

I 1

5 2-ring: :111:11 :11 1 1
3-ring: 0 :1:11
4 -ring; 0 .

1 1

*
6 2-ring: 1. :11 1101:1111

3-ring: : 1 1 0 : 1 1
4-ring: 0 0 : 1

*-

7 2-ring: .' : 11111 01.11: 1111
3-ring: .

1 1 1 0 1:11
4-ring: 0 0 : 1



TABLE 4 (continued).

Subject

. 8 2-ring: 1 0 : 1 1 1 : : 1 1 1 1
3-ring: 0 0 : 1 1
4 -ring: 0 1 1

9 2-ring: :1 : 11 11
3-ring: 15 : 1 1
4-ring: 0

1 0 2-ring: 0 0 0 0 : 1 1 1 1 1 1 1 : 1 1 : 1 1 1 1. _

3-ring: 0 . 0 : 1 : 1 1
4-ring: 0 :` 1

*
13. 2-ring: : 1 1 1 : 1 1 1 1 0 1 1 1 : 1 1 1 1

3-ring: 1 6 : 1 1 0 1- : 1 1
4-ring; 0 0 15 : 1--

12 2-ring: : 1 1 1 1 1 1: 1 1 1 1
3-ring: 0 1 b 1 1
4-ring: 15 0 6 0 1

13 2-ring: 1 0 1 1 1 1 1 0 1 0 1' 1 0 1 1 0 1 : : 1 1 1 1
3-ring: 0 1 15 0 0 0 1 0 1 1 1 14- ring: - -000 0 0 .I 1.

2-ring: : =1 1 0 1 1 0 0 1 3. 1 0 1 T---.
3-ring: 1 0 0 0 1 0
4-ring: 0 0 T 15" ------1

15 2-ring: iloo!iniiici
3-ring: 1 0 0 1 0
4-ring: 0 0

2-ring: 1 0 : 1 1 0 1 : : 1 1 1 1
3-ring: 0 1 0 I 1 1 1
4-ring: 0 : 1

17 2-ring: 1 0 0: 1 : : 1 1 1 1
3-ring: 0 0 : : 1 1
4-ring: 0 .1 1

18 2-ring: 10:11111001101011110:11
3-ring: 0 1 0 0 0 0 1 0 : 1
4-ring: 0 0 0 0 ,0

. *
2-ring: 1 0 : 3 1 0 1 : 1 1 : 1 1 1 1
3-ring: 0 0 : 1 : 1 1
4 -ring: 0 0 : 1
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TABLE 4 (continued).

Subject

20 2-ring: 0 0 0 1 0 ! 1 -1 1 1 1 1 1 0 1 1 1 1 1 1 ! ! 1 1 1 1
3-ring: 0 0 0 0 1 0 1 0 I 1 1
4-ring: 0 0 0 , i

21 2-ring: 0 ! 1 1 1 1 1 1 0 1 ! ! 1 1 1 1
3-ring: 0 1 0 0 , , 1 1
4-ring: 0

. .

,
. 1

22 2-ring: ! 1 1 1 1 1 1 0 1 1 0 1
3-ring: 0 1 0 1 0
4-ring: 0 0 0

23 2-ring: ! 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 ! 1 1 1 1
3-ring: 1- 0 0 0 0 0 ' ' 1 1
4-ring: 0 0 0 1

24 2-ring: ! 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 ! 1 1 1 1
3-ring: 1 0 0 1 0 0 . 1 1
4-ring: 0 0 0 1

25 2-ring: 0 0 0 0 ! 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 ! 11 ! 1 1 1 1
3 -ring: 0 1 1 0 0' 1 0 0 0 0 0 ! 1 1 1
4-ring: 0 0 0 1 0 0 .

, 1
*

26 2-ring: ! 1 1 1 0 1 ! ! 1 1 1 1
3-ring: 1 0 5 , ,

. 1 1
4--ring: Zi 0 5 .

, 1

27 2-ring: 1 1 1 1 0 1 1 1 1 0 ! 1 1 1 1 : 1 1 1 1
3-ring: 1 0 1 0 ! 1 1 ! 1 1
4-ring: 0 0 0 ! 1

*
28 2-ring: 1 0 0 ! 1: 1 1 :1 1 1 1

3-ring: 0 0 ! 1 ! 1, 1
4-ring: 0 0 ! 1

*
29 2-ring: ! 1 1- 1 1 1 0 0 1 ! 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

3-ring: 1 0 77 T : 1 T. 37 0 0 1 1 17 0
4-ring: 0 0 0 0 o. 0 0

30 2-ring: 1_1 0 1 1 100001 10010! 1 1 101 1 1 10101 ! 1 1 1 1
3-ring: 1 0 0 0 0 0 0 T. 1 0 0 . . 1 1
4-ring: 0 0 0 0 ' 1

31 2-ring: 1 0 1 0 ! 1 1 1 1 1 0 1: : 1 1 1 1
3-ring: 0 0 1 0 . 1
4-ring: 0 0 1
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TABLE 4 (continued).

Subject,

32 2-ring: ! ! 1 1: 1 1 1 1
3 -ring: ! 1 ! 1 1
4-ring:

* *
33 2-ring: 1 0 0 ! 1 1 0 1 1 ! 1 ! 1 1 1

3-ring: 0 0 0 6 ! 1: 1
4-ring: 0 0 0 ' 1

34 2-ring: 1 0 0 0 ! 1 1 1 1 1 1 1 1 1 1
3-ring: 0 6 b 1 0 0 1
4-ring: 0 0

35 2-ring: ! 1 1 1 1 1 1 1 ! 1 1 1 1
3-ring: ! 1 1 1 ! 1 1
4-eng: 0 *0 ! 1

36 2-ring: ! 1 1 1 0 1 1 0 1 1 1 0 1 1 1
3-ring: 1 0 010 0
4,4ing: 0 0 6 0

37 2-ring: ! 1 1 1 0 1 1 0 0 1 1 0 ! 1 1
3-ring: 0 0 0 0 Cr ! 1

4-ring: 0 0 0

38 '2-ring: 1 0: 1 1 1 11! :11 1 1
3-ring: 0 1 0 : : 1 1
4-ring: 6 0 6 ! 1

39 2-ring: ! 1 1 0 1 ! 1 1 1 1 1 1 1 1 !

1

1 0 1 0 1 1 1 1 1 1 1 ! 1 1 1 1
0 0

!

'.

1
.

*
!

!

:

0 0 1 1

0 1

0

1 1 !

0

1 1 1 100!
6

1 1

0

*
1 1

11
1

1 1 1 1

1

0

1 1

1
5

1 1

1

1

3-ring: 1 ! 1 1 1 1 ! 1 1

4-ring: 0 0 0 : 1

40 2-ring: ! 1 1 1 1 1 1 1_1 0 1 ! 1 1 1 ! 1 1 1 1
3-ring: 1 1 0 o 0 1 !
4-ring: 0 0 0 0

41 2-ring: ! 1 1 0 1 1 1 0 1 1 1 0
3-ring: -1 0 1 0 1 0
4-ring: 0 0 0

*
42 2- ring:- ! 1 1 1 1 1 1 1 1 1 1 0 0 1 : 1 1 1 1 1 0 1 1 1 1 1 1 1 1 ! 1 1 1 1

3-ring: 1 0 1 0 0 0 ! 1 1 0 1 0 1 ! 1 1
4-ring: 0 0 0 0 0 0 6 : 1

43 2-ring: 1 1 0 0 0 0 1 1 ! ! 1 1 1 1
3-ring: 0 0 0 0 1 t

. . 1 1
4-ring: 0 0 0 1
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TABLE 4 (continued).

Subject

*
44 2-ring: 1 1.1 111:1111! 1111

3-ring: 1 0 :11 :11
4-ring:..... 0 0 ! 1

45 2-ring: 1
. ! 1 1 : 1 1 1 1

3-ring: ! 1 ! 1 1

4-ring: 0 ! 1
1

The foregoing tabulation of data does not include six subjects who solved the
problem perfectly on their first attempt.


