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Abstract : - -
Artificial intelligence models are increasingly employed to de-
scribe human problem-solving. Here the relationsnip is developed be-
tween such research, and Paigetian or more generally “structuralist"

theories of cognition. A fundamental correspondence is suggested iy

—

between Piagetian conserva;i&n opérations and groups of*symmetryf
transformations. Acquisition of the ability to treat distinct states L
of a problem as equivalent when they are symmetrically con jugate, may

be a basic process in the.developmeyt'of cognitive structures.

It is furihe:>guggested that the decomposition qf a’problen into
subgoals and subproblems n;y’atfect pro‘lem»solving behavior, even if o
the‘infrastructure of subproblems within the main problem is not on
the surface apparent. : - S

The state-space representation of a problem, borrowed from

artificial inteliigeuce,cheory; is utilized to define these concepts

&

more precisely and to investigate their conéequences;;ggye—aetyq@::r»:~ ——

R

-behaviors of subjects solving a problem may be represented by paths
through the state-space. 7Based on the theoretical ideas set forth, K
hypotheses are suggested predicting cértain patterns in ;;ch paths--
for example the éredomihépce of goal- and subgoal-directed paths, and
the presence of congruén: paths through isomorphic subproblems,

The Tower of Hanoi prob}em is used to illu;téate the main ideas
discussed. The patﬁé through the state-space generated by two
 individual subjects display the predicted effects of the subproblem

‘decomposition and of the symmetry within the*&ta:e-sbace. A natural
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distinction emerges between cognitive structures, i.e, conservation

operations and symmetries which discinghisﬁ the states themselves,

and problemfsolving'strategiés foriproceeding within the state-space,

An Abpendf; by one of the authors (GFL) tabulates the behaviors

of forty-five adult subjécts solving the Tower of Hanoi problem, in a

test of the Sugéested hypotheses,

-




?ﬁgoinng. Some of this research is oriented towards finding the most -

I. Introduction ) - .

A dramatically increasing body of research employs "artificigi

intelligence' models, or mechanical models, to describe human problem- -

“efficient algorithms or strategies for solviné problems with a machine‘

(Arbib, 1969; Banerji, 1969; Nilsson, 1971; Minsky and Papert, 1972),

while other reseatcpfis'3£rected towards simulating or modelling the
human being as a problem-solver (Johnson; 1964; Newell and Simon, 1972),

fhe,preseut’péper, proceeding in the spirit of Newell and Simoﬁ;.develops

-

wvhat the authors believe to be a heretofore neglected relatibnship

between artificial intelligence research, and Piagetian or more general-

s

ly—"structufalist” theories of cognition.
) ihp main theo;etical ideas are iatroduced. First, we assert-the
fundiﬁ?ntal correspondence between Piagetian conservation operations

-~

and symmetry traggformatioﬂs. In its ﬁost general sense, a symmetry

transformation is any operation which carries one state or situation

into another in such a way as to leave unchanged1important“obsétvable

x
o

<features. -In the everyd#y sense of the word "symmetry," these features
are geometric; for example, the fran;fbrmationvwhich changes a par;icﬁlar
configuration of objects into its "mirror i&age" wmay leayé the appearance
of the configuration unchanged. However, we shall be intereéted in
syntactic symmetries and symmetries of the underlying structurés of - 7 ’ﬂ/
mathematical problegg, as well as in the morevfeadi}y apparent géﬁmetric - )
symmetries., .

v Attention is focussed on a subject's ability-to treat perceptually

distinct states of a problem as equivalent, when such states are related



-

by virtue of -a symmetry transformation. The acquisition of such an ability

is frequently es&éntial to the cofrect solution of a_problem;iand
seems to correspond to the "insight" phenowmenon described by tne Gestalt
peychologists. The present paper suggests tnat_"sfnmetry'aéguisition"
may actually be as fundamentel a process in the development of cognitive
structures, as is the acquisition of conservation operations.

ihe second idea which the‘authorspur:ue is that in problem-soiving,
the subject effectively oecomposes a problen into subgoals and sub-
problems, Such a decomposition may govern a subject's behavior even - -

vhen he has not consciously directed himself towards a particular subgoal,

and despite the fact that the structure of subproblems within the main

. problems mey not on the surface be apparent. Under such an hypothesis,

one kind of eymmetry‘which may be explored in a problem is the presence
of subproblems having'identical or isomorphic structure,

The "state-space representation" of a mathematical puzzle or problem,

borrowed from mechanical problem-solving (artificial intelligence) theory,

1is utilized to define the above concepts more precrsely, end‘to investi-
gate their consequences. The actual behaviors of suojects solving a
problem may be refresented‘by paths through the state-spéce’ corres-’
ponding to the sequence of steps the subject takes,or the moves. he makes.
The theoretical ideas set forth in this paper lead to the prediction of
certain recurrent patterns in such paths--for example, the predominance
of goai- and subgoal-directed oaths, and the presence of congruent paths
through isomorphic subproblems. - e .
Section II is a short review of the necessary background and tnei

most applicable current research in artificial intelligence.

Section III introduces the relationship between symnetry transformif
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tions and consérvation operations, and dravs an analpgy vith'tﬁe physical
sciences in order. to motivate this relationship. The notio; of symmetry
is discussed in the state-space of a problem. The example of Pi;getian

number coriservation is examined in detail; examples are also drawn froq:

Tic-Ta:-Toe, 2-pile Nim, and a Checkerboard Problem.

-

In Section IV,'éeidefine additional concepts central to the present
> . epproach to human problemssolving~ subgoals and subproblem state-spaces,
isomorphisms and automorphisms in the state-space, and various mesns by

which a subject may "reduce" the state-space diagram in‘accomplishing

the solution of a problem,” . ...

S

»

The Tower of Hanoi problem, also known as the Tower of Brahma
(Gsmow, 1947; Gardner; 1959), is introduced in Section V, and its state-

space‘used to illustrate the main ideas so far discussed. .The paths

through the state-space generated by Ewo fndividual subjects are dis-

played. These illustrate the predicted effects of tﬁe‘decompositio1

into subprcblems, and of the presence of symmetries within the state-

space.. seme po§eib1e implications of the present reséarch are suggeeted

in Section VI. - ' N : '
A paper to follow by onmne of the authors (GFL) tabulates the be-

haviors of forty-five adult subjccts solving the Tower of Hanoi problem,

and 1nvestigates the validity of the hypotheses presented here.

&
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- . II. Review of CutrenE Research.

Here we shall summarize some of the techniques of nechanical
. _ problem-solving, or "artificial intelligence,ﬁ which have ioundcappli-
cation to the programming of proolem-solving capabilities on ‘the
: I computer. These are the techniques from which we borrow in order to
; ‘ ] establish a franework for the discussion of human problem-solving,
We shall also mention some of’the‘approaches by othep authors applying - "~

artificial intelligence methods to describe or model the problem-

aolving behavior of human beings.

A. State-Space Representations and Search Algorithms

Nilsson (1971) defines the "scate-space representation” of a

problem as the set of distinguishable "situations" or configurations of

s

ST e

che problem, together with the permitted "moves" or steps (transitions)
from one ppoblem situation to another. Thus a problem consists of 'an
initial state, together with all of the states which may be obtained | -
. from the ini;ial state by;successive moves, One or more of these
successor states is classified as a goal state,
For example, the problem mightrbe to pro;e a piven theorem in

symbolic logic. The initial state would be the set of premises of the

Acheorem, a collection of wellJfotmeiffocnulas. A stace of the problem
would be any collection of well-formgd Egrmulas which coulorbe oii;iiea
from the initial set by succecsive application of the rules of logic.
The application of a simple rule of lo°ic to add a new well-formed

formula to chose.previously obtainegwwould constitute a permitted step

or transition from one state to the next. A goal state would be any set

ot
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‘of well-formed formulas which included the desired conclusion of the

*

theorem. -

'A generalizatiom of the concept of a state-space reoresentation
for a problem is the onalogous structure for an N-player game, A ,
problem may then be considered a l-player game; examples of 2-player

games are chess, checkers, and tic-tac-toe. " A state is now defined

as any configuration of the game, qith the additional information as

 to. which player has the move included in the description of the game

1 - T
configuration. For example, a state in chess is any legally reachable

.position of the pieces;rtSEiiher with the information that White (or

" Black) has the move. The legal moves of the game determine the transi-’ -

‘tions from‘etate to state. In the game trce, the opposing players

Fal

typically have Sifferent goalfitates or disjoint sets of gocl states,

e

* The game tree for 2-pile Nim is depicted in Figure 1,

One goal of srtificial intelligence researchrhas bee : programr
high-speed coﬁputere to solve problems in logic, to piay games such as
chess adﬁ checkers, or to make oeciinns based on avaiiable intormqtion
in arbitrarily specified situations to obtain che most favorable prob-
able outcome, Thus<an entire branch of!this research is devoted to
obtaining efficient search algorithms by means of which the computer
can "look ahead" in the state-space or game trce, or "foresee" the
possible outcomes following a particular choice. Nilssonrdiscuescs
;"breadth-firet" and "deoth-first? algorithms for searching within the
ettte-space or game tree, as well as strategies that combine features

of these two approaches.

1Exceptions are games in which players move simultaneously without

knowledge of opponents " moves.
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FIGURE 1. Game tree (state-space)
for 2-pile Nim.,

Three matchsticks are placed in
one pile, and two in another. The
object of the game is to be the
player to remove the last match,
Each player 'in his turn may take
away as meny matchsticks &s he
wishes, but only from one pile,
Each state is designated by a
pair of numbers representing the
matches remaining in the respect-
ive piles, end by a subscript
denoting the player who has the
move,
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Since for most prcblems or games the number of possible branci s

e

rapidly becomes as:ronouical,wthe“field of 'choice aust somehow be
parrowved. In ovder to avoid searching to the very end of every path,

8 value may be assigned to each state based on an obsarvable feature of

that state, which represents a measure of expectation for future success.

An example of this Eechnique is the use of "positional judgment"” in

chees whereby such featugeo as "control of the center" and "safety of

" the King" render a position desirable or undesirable. Once criteria

for such an evaluation have been established, the search algorithm may

- be constructed so as to look only n wmoves into the future, to cal-

culate the evaluation function for the terminal states thus rveached, and
to make & choize which maximizes the minimum value of a1l terminal states
resulting from that choicc (Nilsson, 1971, p. 138). That is, uncer the

sssumption that the player's opporient(s) make the best possible moves in

- all cases, such an algorithm maximizes the expectation of success. A

-wmodification of the above "minimax' ‘procedure which further reduces the
—~~

nunﬁcr of states in the search is to make a selection based on certain
ptc-cpgéified heuristics of the moves whose continuations are to be
juvestigated.

The "General P}oblem-Solv&r" of Newell, .Shaw and Simon (19?9’

embodies a kind of depth-firs: search algorithm in which the first object .

of the program is to identify a subgoal state which might eventually lead
to solution of the main problem. The subgosl state is chosen to be "less

distant" in some suitable sense from the goal state, than is the initial

- state. When such a subgoal has been identified, control switches to the

task of attaining the subgoal, prior to returning to the main problen.

This technique is to be applied recursively, until a string of attainable

-7-
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B 'lyp_othui:c that h\-nn problex-golving is demoustrably governed by

The mcent paper uuru :ho fundmntal importance of the symmetriss

subgoals has bun;mnud-ﬁut extends from the prodlem’s initial

state to its goal state. . -
With the General Problen-Sulver, llcwll. Shav and Simon come closes:

in th area of uuttchl intelligence to caking the mitton that

utilization of the subgoal and aubproblu umcmrc of a ptoblu is furds-

meutal to ofﬁ.clcu: problu-solvie;. ~Ia the munt paper, the authors

identifisble subproblems and subgosis within ﬂu*uau-:pacc.

The geonetry theorea proving machine of Gelerater (1959, i960)
utilizes the "syntactic rsy-ttrin" of a problem to facilitate the
search within tho}éa:&-spuc. When the program has succeeded in reach-
ing a particular scate, it-gentrates those states vhich aye oynfaé?tcally/
equivs.ent, in effect equivalent by symmetry, to the state that was U

reached, thue obviating the necessity of reproducing all the equivalent

paths. Such a program is more efficient in cases where symmetry exists.

of a problem in 1u£1ueuc1ng the human problem-solver's behavior.

o~

B. Artificial Vs. Human Intelligence

The methods that have been mentioned thus far aure all directed
towards more efficient machine programming of p:oblem-soiving capa-

bilities. While these techniques have often been motivated by some

mtfospcs:;lvcly obtained information as to how a human being might solve 7 ]

. the same problem, their main purpose has teen effective computer pro- ‘

gramming. Now let us turn our attention to a different goal, namely
the application of aritificial intelligence to the examination, under-

standing, and modelling of human believior. -




,generaliz;tion or extension.-

One approach taken by artificial intelligenee‘researchers has been
to simulate homan problem-solving, human information processing, or
liuman perceptual capabilities. Here the eriterion'for Success nas not
been any claim that the program actually resembles the way people think,

but rather its success in generating human-like behaviors. It is of

course impossible to do justice to these programs in a brief review.

fPerceptnal problems such as mechanical procedures for interpretation of*

depth in two-dimensional scenes (Guzman, 1968) are included among the
investigations reported by Minsky and Papert (1972). They also discuss'
Piaget's conservation experimentsifrom the standpoint of the acquisition
of descriptive and deductive procednres. Progress has been made towards
the machine interpretation of natural languages (Winograd l971) Hany
efforts ‘along these lines, however, are subject to the limitation that

the programming‘methods employed do not lend themselves to further

U

£

In a different approach from that of trying to simulate human

L e -

behavior with the computer, Newell and Simon (1972) propose a coumprehensive __

model for the human problem solver as an information-processing system.

They introduce e "problen,space” to represent the task environment within

LA

the information processing system; then they postulate that human problem-

solving takes place by means of a search in such a space,
According to Newell ‘and Simon, a problem space consists of:

1. A get of elements, U, which are symbol structures, each
representing a state of knowledge about the task.

2, A set of operators, Q, which are information processes,
each producing new states of knowledge from existing states
of knowledge.

3. An initial state of knovledge, Uy, which is the knowledge

about the task that the problem solver has at the start
of problem solving,




&. A problem, which is posed by specifyiﬁg a set of final,
desired states G, to be reached by applying operators
from Q. -

5. The total knowledg;Aavailible to a problem solver when he
is in a given knowledge state, which includes .., :

(a) Temporary dvynamic information ...

(b) The. knowledge state itseif ...

(c) Access information (to memory) ...

(d) Path information about how a given knowledge state
vas arrived at ...

(@) Avcecs information to other knowledge states that
Have been reached previously ...

(f) &efexence information ..."

7 I T

Newell and Simon seek to model observed human performance in problém-
solving tasks such as cryptarithmetic, logic theorem-proving, and chess.

The first four comboﬁents of Newell and Simon's definition of the
.’ .
problem space correspond to taking the state-space representation of

©

the problem as described by Nilsson, interpreting a “state of the

problem" as a "state of knowledge about the‘problem," and incorporating

the wvhole into the information processing system. Rather than'combine
thé—problem and the problem solver into one system as Newell and Simon
have done, the authors oé the pre;?ﬁt paper prefer to regard them as
two separate but intefactﬁng systems. 7Othe; researchers (Carr, unpub-
lished; Menzel, 19i9)*alsq favor the preservation of the distinction
bétueen problem and problem solver, utilizing a feedback loop and

e

various decomposition and excenqion theorems (Arbib, 1969) to generate

the successiQe states of each system. Newell and Simon obtain what
they call the "problem behavior graph" of a subject in the "external
problem space”--this is the analogue in their model of the paths within

the state-space representation which are to be the main objects of

study in the present paper. .




In a leso‘genéral .context E. M. Johnson (1964) proposes an inform-
ation processing model simulating the observed behaviors of subjects

solving concept formation problems (Bruner, Goodnow and Austin, 1956).

-11-
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III. Conservation Operations and Symmetries

A. Background

The correspondence between conservation laws and symmetries of

;iture is a well-known éoncept in modern physics. For example,
conservation of momentum derives from the invariance of phyiicaf inter-
‘actions under spatial tramslationms, conservation of angular momentum
‘from rotational inv;riance, and conservation of energy grom iﬂ;ariance
under time tranblatioﬁs (Peynman, 1965; Wigner, 1964);47\
The fact long remained unos;etved that such a correspondence ex-

isted as a general principle. in some cases physicists became aware of
and successfully éxpressed a conservation law prior torunderstanding

that the law actually derived from a known symmetry of the ﬁhyéical .

world--for example, in the cases of conservation 6f~moﬁentum, angular

N
TR

< -+~ momemtum, and energy.,AIn othef instances the symmetry was we}l-known,

and éhysicists pfoceedézr;o define an,obgerv;bie whose conservation -
followed automaticaliy from the fact of obedience to the symmetry.
Thus conservation of parity, for inséance, follows from the supposed
inéariance of pﬁysieal'interactions under spatial reflection. Such
newly defined observables proved 1mmeasurab1} useful when it was learned
that on a sub;atomic level, symmetries such as sbatial reflectién which
had heretofore been taken for granted were subjeét to violaﬁion, and
non-conservation 6§curred. -,V

Finally there were some well-known conservation laws, based on

wvhich previously unknown sjmmetries could be defined. Thus conserva-

tion of electric charge can be interpreted as a consequence of invariance

-12-




under rotations in an abstract mathematical space,

It is now understood that the pairing of a consetvation law with

8 symmetry in physics may.be regarded as a mathematical rather than an

PR ——

- empirical relationship, which‘follows from the mathematical theory of

Lie groups. This relationship asserts that to every set of observableé
éorresponds a certain algebra of observabies; and to every such algebra
corresponds a group.- If the values of the-observables are conserved,

i.e., unchanged as the system develops in tia;? thenvit turns out that

the group elements describe physical symmetry transformations of the

~

systenm,

‘

B. The Structﬁralisi Methodology : ’ —_—

The gfbup is the paradigmiin mathematics -of the methodology which
has been termed "structuralist" (Piaéet, 1970; Lane, 1970). A group
is a set, closed under an associative binary operation, possessing an
1dentiéy element, and in which each element has a corresponding- inverse,

The set of symmetry ttansformgtions 8f a system always forms aAa

e
group. Any pair of symmetryff?ansformations may be performed succes-~

J——

sively to generate a third\symmetry transformat;on, defining an asso- 7
ciative binary operation. The identity transformation is always inqluded'
as a symmetry by convention, and to every symmetry transformation
c&rreéponds the inverse transformation which returns the system to its
initial configuration (Wigner, 1959).

The structuraliét metﬁodology has been applied to fields of study
as diverse as anthropology (Levi-Strauss, 1963, 1969), linguxstics

(Harris, 1951), and psychology (Piaget and Inhelder, 1969), as vell as

The space is known to physicists as isotopic spin-space (Eisenbud and
Wigner, 1958).
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to mathematics (Bourbaki, var.). Accofding to Piaget (1970) a structure
'in the most general sense is a system or setiwithin which cerca;n"
rélations (qr‘operations) have been defined, embodying the conceptsAof'r
wholeness, transformation, and self-regulation. For example, a system
of kinship constitutes a structure in anthropology as does a gro;p in
wathematics., .

In Piégetian developmental psychology, the conservati;d opefations

--conservation of number, volume, quantity, ‘etc,--are the transforﬁa-

tions which govern the cognitive structures assumed to underlie an

individual's behavior (Ginsburg and Opper, 1969). The acquisition of‘
these conservation operations“by children defines seéugntial stages
in their cognitive development.,

* In view of the parallél fundamental roles played by group structures
in mathematics and ﬁhe‘aforemenfioned cognitive structures in develop-
mental psychology, it is ﬁatural to try to look at the acquisition of
Piaggtian conserva;ion oper;tﬁoﬁs as equivalent to-the acquisitioﬁ of
a group of symmetry transformations. ‘

_ For an observable (such as rumber, qﬁantity, eté;) to be conserved-
means in fact that vhen a given state is somehow traﬁsformed into an
altered state, the value of the observable is unchanged from its initial -
value, Of course for the second state t6 be regarded as different from
the first at all, there must be at least one other observable which does
chaﬁge in value under the t;ansfotmation. Such an observable is not
" conserved by the transformation.

Givenra set of states and a set of relationships among them (for
: eximple as discussed in Section II, the permissible moves which take 7
one state of a problem or game into another), a symmetry transformation

- 4
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may be defined as a one-to-one mapping from the set of states onto it-
self which leaves invariant the specified relationships among the

states. Any collection of such symmetry transformations generates a

symmetry group.

let us gay that a given symhetty group G conserves a given set of
observables when for everi state S in the system, all states which may
be obtained from S by applying symmetry operations from G have exactly
the same values of the specified observables. We shall aiso be inter-
ested in the maximal symmetry group possessing this property for a given
set of observaﬁles, that is, every symmetry transformation wiich preserves
the values of the specified observables is to be included in the group.

As an example, consider the rearrangement of n objects
on a table or ;wo-dimensional surface depicted in Figure 2, The final
configuratioﬂ of objects (descriﬁea by the coordinates x Yy oo s ;;')
may be obtained from the initial coﬁfiguration (;i, oo s ;;) by means
of a rearrangemeét mapping of deformation which appropriately transforms
the éoints in the 2-dipen§iona1 plane. Such a rearrangement must be
one-to-one (so that two objects do not wind up at the sameApbint) and
is taken to be ;urje;tive (so as to be invertible), Noting that any
two mappings of this kind may be applied successively to yield a tﬁird,
the set of all such mappings forms a group K. For this example, the

collection of states is the set of all possible cdhfigurations of n

objécta in 2-dimensional space, forn = 0, 1, 2, ... .

To say that '"number is conserved" means that when a given state
(of say n objects) is transformed into an qltéred state by moving the
ijecép around (not by adding any or taking any away), then the value
of tﬁe observable "number" remains u;changed at n, The group K defined

-15- _ -




FIGURE 2. Rearrangement of n objects in 2-dimensional space,

The transformation may be implemented by means of a spatial
rearrangement mapping or deformation,
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above, that is the grc;up of one-to-one surjective mappings from 1R2
onto lkz, maps the set of states onto itself in such a uay‘that a
state specifiea by n points continues to be specified by n points
afper it is transformed, and thus has the sam;,value of the observable
"number.": It is not difficult to see that K fits our déftnition of a
symmetry g}oup conserving that obser!aple. V I

- Hﬁat we are saying is that in principle the acquisition of "number
conservation,” that is the ability to respond that the number of objects
remains urichanged when only the positions of the objécts have been
changed, is logically equivalent to the acquisition of the ‘structure of

the symmetry group K, that is, the ability to undo (iavert) any rearrange-

ment transformation and to perform any twa such transformations

successively.

| It may well be that stages in the acquisition of a symmefry group
structure actually correspond to the acquisition'of particular subgroups.
For example, a childrac some time might recognizer;hat the number of
objectsris conserved whan a configura:ibn is merely translited a ger:ain
distance in space, without its being spread out Qr’otherwise rearranged,
1£f this were tbyoccur, we would be able to say that the subgroup of X

composed ofrall translations had been acquired as a symmetry structure.

The symmetry group for the above example éf number conservation is
relatively complicated to define. Furthermore its el;ments are only
~"symmetries" in a rather formal sense, namely that different configura-
tions of n objects ma§ successfully bg treated as equivalent for some
purposes. Having argued for the reformulation of conservation opera-
tions in terms of symmetry groups, the next step is to cite examples of

~ systems in which the symmetries are m&re familiar, but where the

=17~
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identification of connetved quantities is more cumbersome. Such

* examples are considered in the next sup-sqction. Unlike the case of
constrvation of number, many examples drawm from problem-lolving turn
‘out to be easier to describe in terms of symmetry gronps than in terams
of quantities conserved by the transformations .in those groups,

" The above correspondence ;etneen symmetry groups and conserved
quantities is analogous but not identical to the correspondence in
physictrbctween syunetries'and conservation laws outlined in SQction'
III.A. The major difference is that for a physical system the time-
dcvilopndnt operator pfays a special role, A physical state evolves
in time uniquely according to the dynamics of thcAtysten; and consttva-
“tion of an observable quantity weans specifically that the qQuantity is
unchangcd by the time-development. On the other hand in attempting to
describe problem-solving behaviors, one must ailow for a choicc of
possible moves, whilc there wa; be many equivalent choiccs in accord-
ance with the symmecry that is present, the problem-solver must never-
tﬁclett wake only one choice, and cannot make all of them simultaneously. -
Ihercfo;e,tne actual time-development will often be asymmetrical.

Thus for a physical system conservation is defined with respect to
}7 the time-devcln;ment operator only; and states that are conjugate by '
syametry renain so as they develop in time. In the state-space of a
problem or game, however, we look at the group. of all transformations
vhich conserve the values of the lpecified.observablel, a group which
nost often does not include any transformation vhich effects the actual

tim:-development.
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C. Symmetries in the State-Space Representation

The charactériza:ion of the "states" of a systeijis the esseﬁ:ial
first step 'in cybernetics and virtually all artificial intelligence
research. Specification of two states as distinct neansﬁ;hat tﬁey

differ in the value of one or more obscrvablét, i.ef, in a quantity

vhich is not conserved by operations connecting the ‘two ltltelf?“
Alcernatively, characterization of. two states as equivalent fér the

purpose of solving a given problem means that they have the sane values

. for the observables relevant to that problem; in fact they are equivalent

modulo a symmetry transformaticn which leaves invariant the values of
those observables and preserves the relationships among the states.
’ " 1. Tic-Tac-Toe 7

For a simple exemple, consider the state-space representation of.
the game Tic-Tac-Toe. There are nine distinguishable states which can
be reached by the first move of the first player. However, modulo the
rotation or reflection symmetry, only three distinguishable states exist _
(Ftkuii 3). In constructing the state-space representation for Tic-Tac-
Toe, one qouldrchoosc to represent all the distinguishable states of the
system, thus obtaining a very llrgcrstgtC-tpace; or one cculd use the -
much smaller state-space obtained by regarding tﬁ;te states related by
symmetry as eiuiValent. Choice of tgé smaller state-sp;ce corresponds
t§ "reduction" of the state-space diagram modulo the symmetry trans-
formations. a -

Thus in originally specifying the state-gpace representation for

3It should be remarked that the value of an observable which character-

izes a state need not be a numerical value. For example, the observable
"color" might have the value red, green, or yellow, in specifying the
states of a ‘traffic directional system,
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_ FIGURE 3. Tic-Tec-Toe states eguivalent by symmetry.
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a problem or game, one must make a choice: to imcorporate or to - " s
- . neglect the avaf.lable syametries. i’ro. the onudpot;t of efficient
' problem-solving, the machine programmer will try to incorporace as
k : - much of the symmetry as possible. However, in studying actual human
| problem-solving, ve must take into account the possibility that the
'i oubjgct solving a problem or playing a game does not necessarily
t perceive all of the symmetry whiclhi is in fact present, Therefore if
we are to map his behaviors faithfully, we wust begin with the expanded

state-space representation of the problem or game.

]

Tic-Tac-Toe provides an exsmple of a game in which thi rotation
and nflccfi.di;"ijy-ntry is easily recognized, but the corresponding
conserved quantities are cumbersome to define. For example, one such

quantity would be the number of X's in corner squares; anocher, the

number of 0's in corner squares. These numbers att,unciﬂngﬂl by the
rotation or rcflcc,ttouiopcratim. In order to characterize the
distinguishable states completely, it would still be nccc;ury to
upanA:c the sttutto;z of two X's (or 0's) in opposii; corners from
two X's (or 0's) in adjg;cnt,cofmu; this could be done by means of
still ano,thcg numerical observable. Similar observables can be
defined which describe the occui;ancy of the side squares and of the
center square. In learning the game of 'l:tc-‘rac-froc, one of the steps
might be to realize that if the first player has put an X in the center,
tin second player can force a draw if he {ﬂ.acu an 0 in any corner,

. Lbut ‘l.ous if he places an 0 in any side square. 'nm fomlat!on
clearly incorporates the s)mu;y iu its emphasis on the geometric
property of “corner” or "side." It can be restated in terms of the

numerical observables defined above.
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A game igomorphic to Tic-Tac-Toe may be described as follows. The
integers 1, 2, ... , 9 are written on & pad, and the twe opposing players
take turis, each selecting one of the muabers as his own. Neither player

way select a nuwber already taken. The goal is to obtain any three

"sumbers which idd up to exactly fifteen. Figure 4 illustrates the
isomorphisa between this game and Tic-Tac-Toe. A player trying to learm

this game would not have available the ptzception of geometric symmetry
vhich is presented by the Tic-Tac-Toe grid. Unless he ‘had prior famil-
uu:} with the magic square, he would h‘vc to seek such rules as, "If
the first player chm;s 5, then :hq second player must pick an even
sumber in order to avoid losing." Posing the problem in this fashion
highlights the search for the relevant observables (those which are

important to formulation of a succeasful strategy), which of course,
unbeknownst to the player, are just those observables which are con-
served l;y the Tic-Tac-Toe symmetry--"even numbers selected," "odd
numbers cxéluding 3" etc.

In short, the game of Tic-Tac-Toe illustrates (a) that symmetries
may be more convenient than the quantitie; conserved by those symme-
iriu for formulating tiu notion of equivalency m;g states, (b) that
symaetries and conserved quantities are however ;ogically interchange-
able, and (c) that the “rules of the game" may be reformulated in such
a fashion as to make 1§¢nt1f1cat§on of the conserved quantities easier

or more convenient than characterization of the symmetries.

2. S try in 2.pile Nim

The complete state-space for the game'of 2-pile Nim was depicted

in Figure 1. While the initial configuration of 3 matchsticks in the

[,
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FIGURE 4. Magic Square for the integers 1, 2, ... , 9.

) This illustrates the 1somorphism between the numu selection
| game described in the text ‘and 'nc-l‘ac-'roe. B




first pile and 2 in the second is not symmetrical, it is easy to see
that a ce:éain subspace of the state-space is symetnicél,. with respect
to exchange of the number of matchsticks in the two piles (Fi:gure 5).
'th.at is, therstate labelled (2,1) with player A to move is equivalent
. or conjugate to the state labelled (1,2) with player A to move. If
- player A has a winning strategy Vin the first situation, he will have an
equivalent ﬁnning?t;;;egy in the secopd. The "reduced" state-space-
for a sub-game of 2-pile Niﬁ is indicated in Figure 6.

Thus it need not be the entire gam; or problem wiich possesses a

symmetry; it is meaningful to discuss the symmetry of a subgame or

] subproblem.

Finally we remark that while perception of the syniétry in 2-pile

Nim does not of necessity mean perception of thg éinning strategy, it
is strongly sugges:ive. The number of matchsticks in the first pile
alone is not cornservevd by the symmetry operation; but the sum and the
differenc; ofr the numbers of matchsticks in tl;e’two piles are conserveci. 7
frhis suggests thatr the winﬁing strategy should be formulated solely in
terms of 7threse quantitries. In fact, the first player can always win by
'following t_:!'te rule, "Make both piles eq;x;l," or '"Make the difference

between the numbers of matchsticksiin the two piles equal to zero."

3. A Checkerboard Problem

A well-known problem presents the would-be solver withg an ordinary
checkboard from which tw;) opposing corner squares have been removed, as
depicted in Figure 7a. The problemé»solv'er is permitted to cover any
two horizontally or vertically adjaéent squares at a time with a paper
v clip. By means; of a sequence of such moves, the goal is to cover all
of the squares in the original layout.




FIGURE 5. A symmetrical subsvace
of the 2-pile Nim state-space,

Compare with Figure 1.
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FIGURE 6. "Reducing" the symmetrical
subspace of tne 2-pile Nim state-space.

Compare“with Figure 5.
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FIGURE 7a:; Initial configuration for a_checkerboard problem.

" FIGURE 7b. More difficult p}oposition of the checkerboard problem.
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The key to solving this.problem'is to recognize that the permitted
operaoiod of covering two adjacent squares leaves unchanged the quantity
"Np minus N," where Nj, is the number of white squares remaining, and

Nw the number of black squares remaining. However the initial value

of this quantity is 2, and its value in the desired goal state is O.

o ‘55__._«“ . - o

{
Consequently, the problem as posed is impossible,

Let us construct a state-space for the Checkerboard Problem as
follows. A state will be any configuration of black and white squares

(smaller in dimension than 8x8) having the checkerboard property that

“squares of the same color are always diagonal to each‘other. . The

state containing no_sqhares, since it is the goal s;ato, must also be
included in the state-space; for this reason the state-space must be
larger than the collection of states which can be reached by legal
moves from the initial state, 7

Once tho fact that the permissible moves -conserve the qoantﬁty
Np - Ny is noted, then it becomes immediately apparent that the above
state-space is composed of disconnected component subspaces, cor;espond-
ing to different values of Ny - Ny; i.e., it is impossible, by legal
moves, to travel from one such component subspace to another. The
initial state and the goal state simply occur in different components.
This problem is unusua{’in that the transformations which do the con-
serving (of Nbr- Nw) are the legal moves themselves, which are thus also
"symmetry transformations" in the sense discussed above,

Solution of the checkerboard problem may be made considerably more
difficult by,oroposing it without the shading of ;the squares (Figore‘
7b). This removes a perceptual feature vhich is a clue to identifying
.the conserved quantity, but which plays no intrinsic role in the state- -
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ment of the problem itself,

Agotheryfamous problem for which the allowed moves themselves
conserve a definable quantity is the "15-puzzle" (Figure 8). The state-
space contains two hisconnected-subspacec, which‘can bQVderived
rgapectively from the even and odd permutations of the original con-
figuration of number tiles. For example any succession of legal moves

vhich restores the blank to its original position must effect an even

permutation of the number tiles. Thus there arises a whole class of

"1-poo¢iblem;oa1" states for any given initial state.

To sum up, cevefal examples drawn from familiar problems or games
have been pr‘centadrinﬁsaiéﬁ the structure of the problem manifests
itself in the state-space by means of patterps‘ofrsymmetry. Alterna-
tively it is possible to identify precisely those observable properties
of the states which are left unchanged by the symmetry operations. While

these two formulations of conservation are logically equivalent, one or

the other is frequently more convenient for desc}ibingra particular

problem situation.irIt is also meaningful to discuss symmetries that
may be present in the state-space of a subproblem of the main problem.
Finally the symmetry transformations or conservation laws often‘provide

the key to finding the correct or "elegant” problem solution.




1
!
et v

FIGURE 8a. A state of the 15-puzzle. R

A legal move is to slide ihto the blank square one of the -
number tiles adjacent horizontally or vertically.

FIGURE 8b. A state of the 15-puzzle impossible to reach
from Figure 8a,
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IV. Representation of Problem-Solving Behavior

The formal correspoédence between a group of symmetry transforma-
tions and ;he observable quantities conserved by those transformations
suggests that the acquisition of symmetries may be as fundamental to
cognitive development as is the acquisition of conservation operations.
We have seen in several problem situations how the presence of symmetry
may be represented in the ctate-space; S

A second feature.of a probien which is susceptible to study util-
izing the state-space is its infrastructure of subprqbleﬁs. Ifrhas
been commonly held thag an effective problem-solving technique is to
establish subproblems or gubgoais whose solution or attainment might
assist in the conquest of the main problem. Polya (1945) suggests such
a; approach in éiscussing his problem-éélving "heuristics;" it also

forms the basis for Newell, Shaw and Simon's "“General Problem-Solver"

discussed in Section II.A above, anémsdggests to Nilsson (1971,Lp. 80)

_one way to reduce the state-spacc. . But to establish rigorously the

role of such identification of subgoals in human problem-solving behavior
remains difficult, and psychologists are still divided even over the
assunption of "goal-directedness" (Tolman, 1948; Kimble,
1961, Sec. 13). Characterization of the subproblems of a problem as
subspaces of the state-space should assist in inye#tigacing the conse-
quences for behavior of a subproblem dec;mpositidﬁ‘ﬁy’the problem solver.
One may also discuss indepéndently the group oﬁ symmetry transforma-
tions of a subproblem, as we did in the case of 2-pile Nim (Section

II1.C). Another kind of "symmetry" whose effects may be explored is

the presence in a problem of different subproblems having identical or
—-

isomorphic structure,
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The above considerations suggest the utility of mapping actual hqun
problem-solving behav;pr as paths through the state-space representation
of the problem. Based on the formal properties of the state-space such
as its symmetry and its decomposition into subproblems, hypotheses can
be formulated which predict properties of the paths generated. Then
the door is open to the development ;nd empirical test of artificial
intelligence models for human problem-solving; i.e., general algorithmic
or mechanical ﬁrécedurec vhich would replicate the properties of the
paths generated by human problem-solvers. The decision to represent
problem-solving behavior as paths through the state-space of the problem
is motivated by the desire to make pr;cise vhat the data is which needs T
to be "explained" by a theory.of human problem-solving. However it does
not yet commit us.to a particular model or theory.

"In practice it may not always be easy to ;gp;esent behavior in this
fashion, The best ei}erimental situation is a problem whose states
correspond to different discrete situations of an act;al physical device,
such as the ls-puzile or the Tower of Hlanoi board. Other available means -
for recording a subject's behavior as a succession of states entered may
include recordings of his oral coﬁments, his wri;ten notes, or even his
gestures and eye movements (Bartlett, 1958; Newell an@’Sinon, 1972).

Before proceeding with further discussion we shall offer rigorous
definitions o{ the concepts central to the present approach. For
compieteness some terms are included which have been discussed in

earlier sections. - .

A, Définitions

The state-space of a problem is the set of distinguishable situations
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or states of the problem, together with the pernitted transitions or
moves from one state to another., The problem must specify an initial
~ state, together with one or more goal states.

A problem is imgossibie if no goal state can be arrived at from
the initial state by means of succe?sive transitions.

A subspace of a state-space is a subset of the states, together
with the permitted transitions which obtain from one state in tge sub-
set to another state in the subset. A subproblem is a subspace of the
state-;pace, having a particular state designated as "initial," and &
particular set of ithfei'designated ii”subgoals. For a subproﬁlen it
is further required that if the initial state is not .the initial state

of the main problem, it can.berentéred from a state outside the sub-

—

- space; and if a subgoal state is not a goal of the wain problem, it can

" be used to exit from the subspace - i.e., to enter a state of the
ﬁioblem outside of the subproblem. There are dften many wafs to decompose
a particular problem into subproblems, which correspond to different -
choices of subgogls and corresponding choices of subshaces within the
state-space,
Two problems are said to be isomorphic if and only if there is a
bijective mapping from the state-space of the first onto the state-

space of the second; having the following properties:
A 1. The initial state of the first problem is mapped onto the
 initial state of the second.
The set of goal states of the first problem is mapped sur-
jec?ively onto the set of goal states of the second.
3. A transition from one.state to another is permitted in the

first problem if ané,only if the corresponding transition

is permitted in the second.
‘ -33-




Two subproblems of a given problem are said to be isomorphic iZ they
are isomorphic as problems tﬁ-their own right.

An automorphism of a problem is an isomorphism of the problem cato

" itself. Amn automorphism of a problem is also called a symmetry trans-

formation or syrmetry automorphism. The set of ail of the automorphisms

of a problem forms a group (cf. Sec. I1I.B) under the binary operation
of composition or the successive application of two automorphisms. This

group is called the symmetry group or automorphism group of the problem.

The states of a problem may be distinguished by virtue of having
different discretc values for a set of variables called observables.
These observables may or may not be numerical--they may refer to color,
position, etc, An observable is said to be conserved by a symmetry
transformation (or group of transformations) if and only if fo¥ any
state the valuz of that observable is unchanged by the traéifofmation
(or 3ro§p of transformations). ‘ ;

let S be a state of a problem, and consider the set of all

o

™

states vhich can be obtained by applying automorphisms or symmetry

transfo;mations from a group G to S. This collection of states is

called the orbit of S under the automorphism group G. Two states are

said to be congugate modulo the symmetry group G if they are in the
same orbit under G. 7

The orbits within the state-space form mutually disjoint equiva-
lence classes of states. A new and simpler state-space may now be
constructed canonically by coﬁsidering each cquivalence class as a

state in its own right--or alternatively, by selecting one ;epresénta-

tive state from each orbit. The state-space thus obtained is said to

have been reduced with respect to the symmetry group-G, or reduced
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modulo G. G may be the full automorphism g;bup of the original state-
space, or any subgroup therecof.

A path in the staté-:pace of a problem is a sequence of states
Sl, Sps eee s Sn such that for i = 1, ... , n -~ 1, the pair (Si. Si+1)

- represents a.permitted transition. ‘A solution path for a problem (or

o

subproblem) is a path in which S1 is the initial state and S“ is a

‘ neither initial nor goal state of the

goal state, with Sz. see » sn-l

problem (or subproblem).

Two paths within respective isoworphic problems are said to be

congruent (modulo the isomorphism) if one path is the image of the other
under the isbnorphicl. 7

We have seen above that one way to reduc;kthe size of the state:
space is with respect to a group of symmetry automorphisms of the
problem. A second means of reducticn-is with respect to the shbproblen
structure, as follows. The state-space may be described (albeit non-
uniquely) as a union of mutually di;join: subspaces, such that for any
ordered pair of subspaces, at most one transitionfexists from a state
in the first to a state in the second. Then an entire subspace may be
regarded as a state in the reduced state-space, and a transition is
permitted from one subspace to another whenever a transition does in
fact exist from a state in the one to’'a state iﬁ the‘other. Fach sub-
space, now a state in the reduced state-space, becomes also a subproblem

of the original problem whenever a particu:lar entry state is desigﬁated

as "initial," and any or all of its exit states are designated as

"poals." Then we say that the ntaté-space has been reduced modulo its

subproblem decomposition.




Pinally one may address the concept of a goal-directed path within °

‘mwm @& problem or subproblem. Rodghly speaking such a path is a solution

path vhich does not "double back”" on itself within the state-space,
woving consistently "“towards' rather than Yawvay from™ the goal state
in which it terminates. The crifetia for defining "doubling back,"
“distance from the goal state," etc. are for the present o0 be estzb-
lished in the context of the specific problem under consideration.

The preceding definitions focus on the states and the permitted
transitions between them. Let us remark that in any actual problem,
at least a portion of the state-space can be generated from the initial
state by means of pro-specified;rules of procedure (or operators).
The operators have verbal aescriptions making reference to the values
of certain observabies for the states on which they aét. The goal
states may likewise be specified as a class by making reference to the
specific proferties required of them - again, values of certainr observ-
ables. These observables-may in turn be derived in some complicated
fashion from the observables with respect to which the operators ave
‘defined.

But the state-gpace formalism is predominantly concerned with what
we may call "problem structure," rather than with alternative means of
problem description or with the implications of different embodiments

of a single problem,

B. Paths Generated by Problem-Solvers

In problem-solving it may be assumed that the solver acts sequeu-
tially upon problem situations (states) to generate successor states,

a - process which can be described by means of paths through a state-space.
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constructed by the researcher. It is not suggested that the problem-
solver 'perceives' the state-space as anAentity during problem-solving.
The syﬁﬁetry properties which have been discussed are formal properties
of the state-space, which ha& (as in Tic-Tac-Toe) or may not (as in the
ﬁagic Square, Sec. II1.C) correspond to geometrical or perceptual

properties of the problem readily apparent to the problem-solver.

The state-space description is limited in its immediate applic-
ability to localized problem-solving_episodeS*during which the solver
"understands" the rules of procedure, and is able to discriminate between
the different values of the perceptual variables which characterize the
states, The acquisition of these rules and discriminative abilities
prior to the commencement of problem¥solving is not explicitly under

discussion, although we are intensely interested in such processes.

during problem-solving as they manifest themselves in altered patterns

of behavi:or;4

Nevertheless, some nétion of how one intends to proceed from the
study of local problem-solving epi;odes to an uhderstanding of the global
process of cognitive change needs to be made explicit; or else one may
be foredoomed to conduct a series of merely formal exercises; The
present authors view the acquisition of symmetry group étruc;ures during
problem-solving as an important weans ofAmakigg'this transitioq. The
fact of which s&mmeérieS'are to be incorporated and which are to be
neglected ultimately determines which states are to be treated as

equivalent and which as distinct. In additioh we believe that such

4Thus ﬁg;ell and Simon (1972, p. 4) étate, "The study is concerned
primarily with performance, only a little with learning, and not at
all with development or differences related to age." -

-37-




manifestly global changes asrPiagec's cognitivé étages can be described
in principle in terms of the acquisition of symnetry group structures
(Section III.B). -

The approach at this stage of the research has been t; formulate
hypotheses respecting the paths generated by human problem solvers
in the state-space of a problem. Such hypotheses are motivated by the
formal properties of the state-space under discussion and represent the
anticipated eikécts of the problem structure in shaping proélem-'
solving behaviaf. Tﬁe following hypotheses of a mor?-Er-less general

nature are suggested. .

Hypotheéis l. In solving a problem the subject generates

non-random-paths in the state-space repreéentati#n of
the problemf Solution paths generated by the problem
solv;r tend to be goal§directed, and segments of
solutioﬁ paths also form portions of goal-directed -
7paths. ‘
Hypothesi#ri. ‘Given a“decomposition of the state-space of
a ﬁroble; into Subproﬁléms satisfying the conditions-for
-the reduction procedure described in séc. IV.A, then
(a) subproblem solution paths ;ghd to be subgoal-
directéd, and (b) when subgoals are attained, the
paths exit from the respective subproblems.r
Hypothesis 3.7 Identifiable stages occur during problem-
solving correspondiné to the solutions _.of subproblems.
That is, p#ths occur which do not constitute solutions

(or else do not constitute the most direct solutions)

to the problem, but which do constitute solutions to
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all of the iso&orphic subproblems (of a particular
structuée) entered by the path,
It may be that the validity of Hypotheses 2 and 3 depends on the
particular way that the state-space. of the problem is decomposed into
subproblems, since such. a decomposition is not unique. 7
Hypothesis 4., When two subprobléms of a problem have
isomorphic st;te-spaces, the problem solver's
respective paths through these subp:oblemé tend
to be congruent,

Hypothesis 5. Given a symmetry group G of automorphisms

. of the state-space of a problem, there tend to

occur successiverpaths congruent gégglg G in the
state-space, Such occurrencés often culminate in
the solving of the problem.

El;borating on Hypothesis 5, it would be ext;emel& interesting if

given arsymmetry group G fotr a problem, one cbuld,demonstrate stages

,posrespondiné to the acquisition of subgroups of G. Hypothesis 5

"(symmetry acquisition) is suggestive of the "insight” phenomenon which
changes the gestalt of the problem solver (Allport, 1955; Wertheimer,
1945). ’

These hypothe§és are not to be regarded as a definitive list, but

rather as preliminary and indicative of the kind of anélysis of the

-~ o

éffects of problem structure that is possible, While some of the
hypotheses may seem intuitively obvious or necessary, it is not dif-
ficult to construct mechanical problem-solving mechanisms which violate
any or all of them. - Thus, if valid, they represent fairly general con-

straints on the properties which artificial intelligence models must
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d}splay in order to simulateﬂhumen problem-solving edequately.

' The hypotheses focus on paths within the state-space, rather than
on the operators that generate these paths., Different formal rules of
procedure may sometimes lead to the same transitions or paths, just as
different descriptions of a mathematical function may nevertheless
define the same mapping. Thus to the extent that one seeks to describe
.behavior using operators which have precise domains of states and act
on these within the state-space, the present formalism will be satis-
factory. Hypothesis 3,‘for example, allows the interpretation of
solution paths within isomorphism classes of subproblems as the appli-

cation of a single operator which maps initial states of such sub-

problems into goal states.
However different descriptions of’the sameioperator can of course
imply different problem-solving strategies, just'as different embodi-
ments of a problem state-space can elicit different strategies. We V
“are not seeking at this po1nt to study the partlcular rules which

subjects employ, but rather the structural features of the behavior

v

they exhibit. This is the sense 1n which the present paper is concerned
-with problem-solving structures rather than w1th strategies,

In order to investigate empirically hypotheses such as the above,
it seems natural to begin with a problem whose state- space possesses
somewhat more symmetry than the problem enviromment presents perceptua1~
-ly, and which displays a rich subproblem structure. The Tower of Hanoi

Problem was selected for empirical investigation for these reasons.

Classes of subproblems exist which are ‘isomorphic to each other, and the

state-space of each subproblem as well as that of the main probiem

possesses symmetry. In Section V the above hypotheses are interpreted
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in terms specific to the Tower of Hanoi problem.
Let us remark again that we are regarding the problem as distinct

from and exterior to the problem solver. In principle the state of the

problem (more generally, the state of the environment) may be regarded

as observable, the full state-space of the problem definable, and its

structure ascertainable.. On the other hand the state of the problem
solQer, and the mechanisms for change of that state, are to be inferred
‘from the trace of the problem solver's behavior in the state-space of
the problem. Thus we agree with the postulate of ; feedback loop be-
tween tpe probleﬁ and the problem solverf rather than choosing to
incorporate the two systems into a single information processing system

(cf. Sec. IL.B). - ‘ ’ ,




V. The Tewer of Hanoi Problem

In this section we seek to make the foregoing ideas concrete by
describing a problem that has been used for empirical investigation
(Luger, 1973). The Tower of Hanoi is a well-known problem that has

been extensively discussed (Dudeney, 1907; The Mathematics Teacher,

1951; Gardmer, 1959). Its state-space is depicted by Nilsson (1971),

and it has already been posed as a probled eminently suitable for
wechanical problem-solving (Hormann and shaffer, undated).

’ In the Tower of Hanoi problem as we study lt; four concentric rings
(1abe1led~1 z »3,4 respectively) are placed in order of size, the 1argest
at the bottom, on the first of three pegs (labelled A,B,C); the apparatus

is pictured in Figure 9. The object of the problem is to transfer all

of the rings from peg A to peg C in a minimum number of moves. Only one

ring may be moved at a time, and no larger ring may be placed above a

i
-
e

smaller one on any peg.

, -‘Figure 10 is the compiete state-space representation of the 4-ring
Tower of Hanoi problem., Each circle stands for a possible position or
state of the Tower of Hanoi boargf‘ The four letters labelling a state
refer to the respective pegs on which the four rings are located. -For
example, state "CCBC" means that ring 1 (the smallest), ring 2 (the
second smallest) and ring 4 (the largest) are in their proper order on
peg C. Ring 3 (the next to the largest) is on peg B. Only states
adjacent in the diagram are "connected" by the legal moves of the game;
that is; a permitted move by the problem solver always effects a tran-

sition between states represented by neighboring circles in Figure 10,

The solution path containing the minimum number of moves consists of
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FIGURE 10. State-space representation of the 4-ring Tower of Hanoi problem.

The four letters labelling a state refer to the respective pegs on wnich the

the four rings are located. Legal moves effect transitions between adjecent
states. - -
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the fifteen steps from state AAAA to state CCCC down the right-hand

side of the stare-space diagram. -,

A. Subproblem and Symmetry Structures

The Tower of Hanoi problem has a natut;1 decomposition into nested
‘subproblems, as pictured in Figure 11, -In order to solve the 4-ring
problem;, iEris necessary at soni?pg§§;g€? wove the largest ring from
its briginal position on peg A to éegrg;hbut before this can be done the
three smaller rings must be assemb{e; in their proper order on peg B.
The problem of moving the three rings from one peg to another may be
termed a 3-ring subproblem, and constitutes a subset of the state-space
representation, 7

As can be noted from Figure 11, th; state-sbace for 4-ring Tower of
Hanoi contains three isomorphic 3-ring subspaces, for which the physical
problem-solving situations are diffetent by reason of the position of
ring 4 (the latgesg ring). Each subspace becomes a subproblem when one

of its entry states is designated as the initial state, and its exit

states are designated as goal states., The various 3-ring subproblems in

turn differ from each other in that the rings are moved between different

ot e et

pegs, as well as with respect to the position of the largesﬁ ring,
Similarly each 3-ring subspace contains three isomorphic 2-ring sub-
spaces, for a total of nine in the entire sEate-space. The various 2;
ring subproblems differ with respect to the positions of rings 3 and 4,
and with respect to the'pegs between wh%ch the rihgs are to be moved,
' Finally each 2-ring subspace may be further decomposed into three

l-ring subspaces, comprising oﬂT§'thtee states apiece,

Each n-ring subproblem, as well as the main problem, admits of a
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FIGURE 11. Subproblem decomposition of the Tower of Henoi state-svace,
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symmetry automorphism. The automorphism maps a goal state of the n-

ring problem into the conjugate goal state which corresponds f° transfer-
ring the n rings to the other open peg. .wete the three pegs of the Tower
of Hanoi board to be arranged at the cormers of an equilateral triangle,
the oyumetry automorphism would represent the geometric operation of

) teflectiou about an altitude of the triangle.

B. Discussion of Hypotheses

Next we seek to interpret the hypotheses proposed in Section IV.B

 for oubjecto solving the Tower of Hanoi problem. To do so_itris neces- —

‘ oar; to establish criteria for "goal-ditoctod" paths through the state-

ib.ce of the problem-or one of its n-ring subproblems. We shall say

that a solution path through such a state-space is goal-directed if the

same state is not en‘tered twice, and at each step the distance from the goal

state {exit state) is non-increasing. The distance between two otates

in the Tower of Hanoi state-spacorﬁs the minimum number of steps actually‘
—

necessary to reach one state from the other, .

Figure 12a illustrates the six mutually non-congruent goal-directed
paths'th:ough a Tower of Hanoi 2-ring subproblem; tiree examples of non-
goal-directed solution paths are given in Figure 12b.

For the S:Wan 4-ring problems, it may be desirable to weaken the
above criterion for goal-directedness by using a coarser measure of
_ distance. Thus the distance between one state in the n-ring state-space
and another can be defined as the minimum number of (n-2)-ring subspacos .

-

it is necessary to enter in order to reach the second state from the

fitst. A solution path through the n-ring state-space is
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FIGURE 12a. Goerl-directed psths throush 2 2-ring Tower of Hunoi subovroblem,

There tre six mutually non-congruent goai-directed paths,

initial state

FIGURE 12b. Examples of non-goal-directed solution psths,
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gba‘ directed (in the weaker sense) if the path does not enter the
same (n-2)-ring subspace twice, and if the distance from the goal scate ’
is non-increasing. 1Ia sﬁé;f,i";:ak goal-directedness" corresponds to
reducing the 3-ring state-space modulo its de;omposition into l-ring
subprqb}gms, and the 4-ring state-space gggélg its decomposition into

| 2-ring subproblems, pri&r to determining the goal-directedness of a path.
Thus it is possibie for a path through the 3-tiQ§ subproblem to be sub-

_ goal-directed while a segment of the same path passing through a 2-ring
;ubproblem is not. A path whic; is subgoal-directed within every sub-
problem traversed, as well as being goal-directed may be termed strongly
goal-directed. The first diagram in Figure 13 illustrates a strongly
goal-directed path; the path in the second diagram is not,

A randomly generated pathfis less likely to be goal-directed than
might at first be Qupposed,*even when one forbids the immediate retrac-
tion of a step. For the 2-ring subproblem such random paths are non-

. goal-directed 11 times in 3?5 the respective frequencies of occurrence

of random paths congruent to the solution paths in Figure 12a are:

11 12 {%, f%, g%. Randomly generated paths are non-goal-directed

v
more often in the case of the 3- and 4-ring problems,

- Having distinguished “goal-dirgcted" paths, Hypothesis 1 and Hypoth-
esis 2a proposed in Section IV.B can be readily interéreted for the Tower
of Hanoi problem.

Figure 14 illustrates the disFinc:ion in Hypothosis 2b between paths

which do and do not exit from their respective subproblems when subgoal

states are attained.
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FIGURE 13, Coal-directed bzths throuch & 3-rinz Tover of anoi subproblen,

- Note that the slight doudble-back in the second dizgram does not éisqueliﬁr
the path from being goal-directed, since it oceurs entirely inside a
l-ring subspace,

1nitiai state ’ initial state
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initial state

FIGURE l4a. A path illustrating Hypothesis 2b, -

e —

The path exits (#) from each 2-ring subproblem when & subgoal
iz attained.

FIGURE 14b. A psth violating Hynothesis 2b,

The path fails twice to exit (#) from a 2-ring subproblem when a
subgoal state is attained,
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Figure 15 depicts a state in problem-solving, as postulated in

Hypochesis 3, where the 2-ring subproblem is consistently solved in the
minimum number of steps, but the-3-ring subproblem is not. The state-

épace has been effectively reduced modulo its 2-ring subproblem decom-

-

position,
Figure 16 gives several’examples of congruent paths through iso-
morphic subproblems, as in Hypothesis 4.
Finally Figure 17 illustrates an instance of Hypothesis 5 - two

successive paths through the Tower of Hanoi state-space congrueﬁt

modulo the gymmetry automorphism.

PRSP,

C.. éubjects' Problem;SolYEﬁg Behavior

VInréigure lé are pictured the ;ctual paths thréugh the state-
space generated by two adult subjects solving the Tower of Hanoi problem.
Each subject was éhown the Tower of Hanoi board, and given verbal instruc-
tions. His moves on the board, as well as his conghgg and conversation
with the investigator, were recorded on tape.

The behaviors of SubjeccﬂA.conform perfectly to all f;éé of the
proposed hypotheses. Tﬁe paths are both goal- and subgoal -directed,
and exit from a subproblem whenever a subgoal state is attained -
(Hypotheses 1 and 2). The first two trials contain five instances of
solution of the 2-ring subproblem in the minimug number of steps, and
two instances of solution in more than the minimum number, while the
3-ring subproblem has not i?t béen solved-by the shortest path
(Hypothesis 3). Trial 1 beautifully illustrates congruent paths through

two isomorphic 3-ring subproblems (Hypothesis 4). Finally, trial 2 is

interrupted (with the comment, '"Could I try again? ... This is annoying

%
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initigl state

FIGURE 15. A Stage in problem-solving.

The 2-ring subproblem is consistehtly solveé in the minimum number of
steps, while the 3-ring subprotlem is not. The state-space has been
effectively reduced modulo its 2-ring subproblem decomposition.

initial sta;e

FIGURE 16. Congruent paths through iscmorvhic subnroblens.

All three paths through the 2-r1ng subproblems in prigure 16 are
~ congruent to each other,
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«es "), and trial 3 (the shortest solution path) follows as the image of
trial 2 undeg the symmetry automogphisw_-,peg B 49 peg C (Hypothe;is 5).

Subject B displays more‘complicated problem-solving behavior.

Both trials 2 and 3 contain segments which are not subgoal-directed
(Hypothesis 2a), although they are goal-directed paths in the weaker

sense (Hypothesis 1). During trial 3 the subject actually makes an

illegal move. The second trial fails twice to exit from the 2-ring
subproblem at the lower left of the diagram, despite.having achieved .
"subgoal” states of that subproblem (Hypothesis 2b). The immediately

prior comment was "I've lost my way." Thus the second hypothesis is

not fully satiséied; although it is far more closely obeyed "than would ~
_be expected from randomly generated paths.

In trials 3-5, the subject solves the 3-riﬁg subéroblem by the .
shortest path four out of six times and the 2-ring subproblem twelve out
of thirteen times, while the 4-ring problem has not yet beep mastered
(Hypothesis 3). Trials i and 2 display seven examples of congruent
paths (type 5, Figure 12a) through isomorphic ?-ring subproblems, as
well as nine instances of théxshortest path (type 1) and one instance

of a paéh (type 3) non-congruent to the others (Hypothesis 4),

B ST

Finaliy trial 4 isriﬁtefrupted, afid trial 5 follows as its image

. under the symmetry automorphism; the subject deviates from the shortest

solution path only after completing the segment congruent to trial 4

(Hypothesis 5).
Thus we have seen in the case of the paths generatéd by two individ-
al problem solvers, illustrations of and a considerable degree of

adherence to the suggested hypotheses,




A paper to follow by one of the authors (GFL) tabulates the behaviors

of forty-five adult subjects solving the Tower of Hanoi problem, testing

r~-imore systematically the validity of the five hypotheses we have

proposed,




VI. Conclusion

Several authors have recently sought to distinguish “strategy"

from "structure” in proplgf-éolving, and to investigate the relation-

' sﬂip between them (Dienes.and Jeeves, 1965, 1970; Branca and Kil-
patrick, 1972), The present papet‘éuggests one natural way to make

ﬁhis distinction. w&ilet the structure of a problem refer to the°

formal properties of its state-space representation, such as the symmetry
automorphi;ms which are present and the subproblem decompositions uhiéﬁ

. are possible. We consider the subject's cogn%tive”structures to include
the conservaéion operati;ns, symmetri;;, aaéw;ubproblem decémpositions
that he perceives in the problem situation. These detérmine the‘states
that he tre;ts as distinct and those he treats as equivalent. They

~may change during ;hé course of problem-solving, leading to effective
reduction of the state-space. The subject's behavior can be faithfu11y<v
,ﬁapped as long as the state-gpace representatibn that is utilized by

‘the researcher is sufficiently detailed, in that it does not treat

states as equivalent thch the subject treats as distinct.

We let the term strategy refer to particular rules ox procedures
forrtaking steps within the state-space once ;he latter has been
established. Thesé are analogous to the search algorithms employed
in mechanical problem-solving. Different individuals clearly use
different sérategies in soiving the same problem, and the same
iqdividual often empléys different strategies in so{ving different but
isomorphic problems. The present paper does not.examine strategies
per se, but hypothesizes that even in the context of different strat-
egies, certain patterns in behavioyrtend to qccur as a COﬁséquenhe_of

* *




acquisition of elements of the problem structure by the subject:
Artificial intelligence models will have to incorporate such structural

effects in order to adequately simulate human problem-solving behavior.
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Behaviors of Subjects So’ving the Tower of Hanoi Problem
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Hypothesis 1),

by subjects
of Hanoi problem (test of

See next page for totals and key to notation,

TABLE 1. Goal-directed paths and path segments generated
solving the L-rinz Tower
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TABLE 1 (continued).

Fraction Fraction

strongly” all
goal.directed |goal-directed

Total all subjects, all trials 102 21 10 133 o7 «93

Total all subjects, first trial 33.6 6 I .87
only .

- Key

1 = most direct solution path (not included in sum tétal) .
* = gtrongly goal-directed path (goal-directed within each subproblem), excepting
the most direct solution path .
+ = goal-directed path, but not strongly goal-dirrcted
- = pon-goal-directed path )

Among paths generated by the random selection of successor states, in which the
retraction of a move is forbidden, less than 2/3 sre gosl-directed and less than
10% strongly goal-directed.




Key

HanOi .

C 1, .'.., 6 = congruence class of goal-directed path
X = non-goal-directed path (Hypothesis 2a) _
- = failure to exit from subgoal state of subproblem (Hypothesis 2b)

C = significant congruence among goal-directed paths throush isomorphic subproblems
NC = significant non-congruence among goal-
subproblems (Hypothesis 4) :

Subject Sequence of 2-ring subproblems

1l

£ 5

13
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15
16
7

18

VW ® ~1 O VM & W N
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111X11111111

1111111111111
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TABLE 2. Paths of subjects through 2-ring subproblems of the Tower of ’

directed paths through isomorphic

gruence 123456 X total -

NC
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TABLE 2 (continued).

Subject Sequence of 2-ring subprobl.ems

19
20

21

22

23
24
25

26

27
28

29

30

3
32
33
3

35
36

37

38

151151111111
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1 :

————
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1

5X3X1111
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111Xx1111-
;11131117
13511111
111-111
11111
11-X111
1%x111
131311
111111
13211511

13XX1111111111131%X
11111111111

11111111111

111311X11131-115111
111

1115115
1 .

1151111111
111
115111111111111 _

con-

- gruence 123 456X total -

10000200 12 0
© 18110201 23 0
11010010 13

9010001 11
010k00 19
18000001 19

22010405
8000001
15010100

8010100
2110101

22120kok
12020100
6000000

10110100

24020003

11000000
17020101

15000301
10000100
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TABLE 2 (continued).

. -con- ’
Subject Sequence of 2-ring subproblems " gruence 123 456X total -

% 11-1111111411-11131 15011000
B 115111511121 9100200

"h2 "111111111156111111
© 5r1r111111111 27000210

433 11555511111 . 7000400

B 1111-111111111 : 13000000

% 111111 ] 6000000

U

123456 X totel -

Totals U5 Subjects T7C 6NC 563 829 253 327 685 28




TAELE 3. Paths of subjects through 3-ring subproblems of the Tower of
Hanoi.

Key
A, B, C, ... = congruence class of goal-directed path (specific to each‘subject)
X = non-goal-directed path (Hypothesis 2a)
- = failure to exit from subgoal state of subproblem (Hypothesis 2b) .
C = significant congruence among goal-directed paths through isomorphic subproblems
NC = significant non-congruence among goal-directed paths through isomorphic
subproblems (Hypothesis k)

. ’ con- -
Subject Sequence of 3-ring subproblems gruence 1 A BCDEFX total -
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TABLE 3 (continued).

con- }
Subject Sequence of 3-ring subproblems gruence 1 ABCDEF X total -

.22 Al1X1B NC 211 1 -5
8
8

23 1XABCB11l : N6 3121
24 1AX1BBl1l k12
25 X11A11AXX1A111 _ 83
% 1x111 b
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2 111 _ 3
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TABLE 4, Subjects solving the Tower of' Henoi problem--stages corresponding
to acquisition of the most direct solutions to 2- and 3-ring
subproblems respectively - (test of Hypothesis 3).

Key

1 = most direct solution to subproblem
O = not the most direct solution

First row: sequence of 2-ring subproblems entered
Second row: sequence of 3-ring subproblems entered
- Third row: sequence of trials on the L-ring problem

- ]
$ = acquisition of the most direct solution., This is defined to occur at the
earliest point beyond which more than half of any sequence of subproblems
(of the appropriate level) are solved in the most direct way.

#* = point betweén successive paths through the 4-ring state-space congruent
by virtue of a symmetry automorphism (Hypothesis 5)

——

Subject

i *

1 2-ring: 100000 01011101$11111101 11111

3-ring: [¢] 0 0 l 1 1 1 0
horing: _ i 0 0

9
0

2-ring:
3-ring:
h-ring:

2-ring:
3-ring:
h-ring:

2-ring:
3-ring:
h-ring:

" 2-ring:
3-rings -
horing:

2-rin§:
3-ring:
horing:

2-ring: 111110111°!
3-ring: 1 1 0 1
b-rina; /% — o

o o 0=




TABLE 4 (continued).

Subject

. 8 2-ring: 1111
3-ring: 1 1
b-ring: 1

9 2-ring: 11111111
3-ring: e 1 1
Yering: -1

:.2 -

 2-ring: 0!1111111
" Bering: - - . O
k-ring: 0

[
[

2-ring:
3-ring:
Y-ring;

ol

[

1111
1 1 l
1 -

2-ring:
3-ring:
b-ring: -

o= |
ol « |
d'w*q
[
ot
olol~ olol- |
= ololr -

o|o

01101101
0 0 10
0 ] 0

o=
=
[

2-ring:
3-ring:
horings -+ O

[

2-ring: 1110110011101 %7
3ringg 1 0 0 0 1 0. —

i el

boring: Q 0 -0

2-ring: 1100 /1 TY011161
3-ring: -
hering:

2-ring:
- 3-ring: .
k-ring:

2-ring: 100!
3-ring: O 0
h-ring: 0

1

[

2-ring: 10-111111001101011 1 1 0
- 3-ring: 0 1 0O - 0 0 0 0

111
:
b-ring: 0~ 0 -9

1

1
0

2-ring: 10! 11
3-ring: - O
h-ring:

1
0




TABLE b (continued).

7 Subject

20 2-ring: - 11101121111
3-ring: 1 0 1 o .!
bhoring; . 0 0

21 Zering: 0!11111101°!$1111
~ 3-ring: 0 1 0 Q 1 1
bhoring: 0 1

2-ring: $11111101101
3-ring: . 0 1 0 1 O
Yh-ring; 0 0 )

0

2-rings 1111011010110101 1111
3-ring: 1 0 0O 0O O 0 1 1
Y-ring: o - 0 0

2-ring: 111111011111111
3ringg I __ 0 O 1 0 0
horing: 0 .0 . S

2-ring: 0000'111101111011011001101

1
3-ring: 1 00 0 000
0 ' ,

1l

“l-ring: )

2-ring: 1111
3-ring: 1
lt-—'ring: 0 ] 1

27 2-ring:; - ) 110!
3-ring: 0 !
h-ring: } 0

*

11111

28 2-ring: 1 11
3-ring:
" Qerings

1
. 0

29 2-ring: 111111001 11 0111111
3-ring: 1 0 0 0 : 0 0 1
horing: - 0 0 0

2-ring: 1101110000110010:2111011110101
3-ring: 'L 0 0 0 _0© , 011 0 0
boring: ~O0 ... 0 , 0 0

"2-ring: 1010!1111101°
3-rings 0 0 1 0 !
horing: 0




TABLE 4 (continued).

Subject.

32 2-ring:
"~ *3-ring:
l-ring:

33 2-ring: : 11

3-ring: 1
b-ring:

34 2-ring: 11111010212111111
3-ring: 0 1 0 0 0 0
Y-ring: 0 0 0.

2-ring:
3-ring:
h-ring:

2-ring: 11110110
3-ring: 1 0 0
bkiring: 0 0

[
[
[
[

2-ring: 111101100110
3~-ring: 0 0O 0 0 o
h-ring:

'
L]
'
L]
[
L 4
*
]
L 4
[
L 4
'
L]

€2-ring:
3-ring:
Yoring: -

2-ring:
3-ring:
Yhorings

40 2-ring:
" 3-ring:
L-ring:

2-ring: !'110111011101
3-ring: L 0 1 0 1 0
Y-ring: 0 0 T 0

2-ring:--111111121111001!11111011111111
3-ring: 1 0 l 0 1 l -0 1 0
Yhoring: 0 0

X
0

2-ring:
3-ring:
h-ring: 7

g




TABLE 4 (continued).

Subject

3-ring: 1 0
h-rings 0

*

44 2-rings !121111°!21111%1111
1 \]
1

*
45 2-rings ! !11!1111
3-ring: ¢ 1 11 1
Yoring: o ! 1
H

The foregoing tabulation of data does not include six subjects
problem perfectly on their first attempt.

A-12

who solved the




